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Abstract

Java is powerful, but its potential in deep-learning
(DL) realm remains untapped. At present, Python
DL frameworks are predominantly preferred over
those based on Java, mainly attributed to their
superior usability and flexibility. To leverage
Java’s capabilities, Dragon-Alpha, a Java tensor
computing framework, has been developed. The
primary goal of Alpha is to provide ease of use,
high-performance, and scalability. Alpha offers
high-level user-friendly APIs for DL, and other
levels of APIs to meet diverse requirements.
Alpha achieves GPU acceleration via cu32
library, and improves efficiency through
techniques like async APIs, C-K-S algorithm,
Im2col-Winograd, and fused operators. Alpha
has the potential to consolidate computing power
across heterogeneous platforms and devices,
based on its multi-layer architecture and
compatibility with Java big-data ecosystem.
Alpha&cu32 are fully open-source, with no
reliance on external libraries. Experiments show
that Alpha&cu32 surpass PyTorch&cuDNN on
Cifar10 and ILSVRC2012 in certain scenarios.

1. Introduction

Deep learning (DL) is a highly hot field of artificial
intelligence. Deep neural networks (DNNs) have been
widely applied in diverse fields, yielding remarkable
achievements. However, the impressive capabilities of
DNNs come with increased complexity. To simplify the
representation of DNNs and accelerate their execution, DL
frameworks have been developed.

Python DL frameworks (Paszke et al., 2019; Abadi et al.,
2016; Jia et al., 2014; Tokui et al., 2015; Chollet) have
gained immense popularity, due to their user-friendly and
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flexible nature. On the other hand, Java DL frameworks
(Gibson et al., 2016; Feenster et al.) are not as popular as
their Python counterparts, mainly because of their more
intricate APIs and limited adaptability. However, Java itself
has many benefits, including robustness, speed, flexibility,
platform independence, community support, and a strong
big-data ecosystem, suggesting that Java’s potential in DL
field has not been fully exploited.

For efficiency, DL frameworks integrate acceleration
libraries (acclibs) to take advantage of parallel processors
like GPUs, CPUs, and FPGAs. Nevertheless, many
widely-used GPU acclibs such as cuBLAS and cuDNN
(Chetlur et al., 2014) are not open-source. The details of
high-performance GPU programming remain somewhat
opaque. As a result, there needs open-source GPU acclibs,
that can help users better understand and utilize GPUs.

To address these issues, Dragon-Alpha&cu32 have been
developed. As a Java tensor computing framework, Alpha
can be used to express and execute DL algorithms. Cu32 is
an efficient acclib for float32 computations on GPUs, and
has been integrated into Alpha. Alpha&cu32 are fully
open-source, and only require JDK and CUDA for
execution. Besides, cu32 adopts C-K-S algorithm and
Im2col-Winograd to accelerate convolution.

In experiments conducted on Cifar10 and ILSVRC2012
datasets, Alpha&Cu32 exhibit comparable efficacy and
convergence to PyTorch&cuDNN, and outperform them in
certain circumstances.

2. Background

2.1. Deep Learning Frameworks

DNNs are multi-layer neural networks, with complex
computational graphs and numerous parameters. Their
complexity allows the learning and expression of
sophisticated patterns, but brings challenges for concise
representation and rapid execution. DL frameworks are
designed to tackle these problems, with ease of use and
efficiency as their key priorities.

DL frameworks offer a set of reusable primitives, based on
the commonly used structures of DNNs. These primitives
can be linked to acclibs for faster processing. Users are
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required to define the forward propagation of DNNss using
these primitives, while the automatic differentiation takes
care of the backpropagation. Such propagation can be
conceptualized as dataflows. Many DL frameworks, like
Caffe (Jia et al., 2014), TensorFlow (Abadi et al., 2016),
Keras (Chollet), and DeepLearning4j (DL4j) (Gibson et al.,
2016), use static flows, whereas PyTorch (Paszke et al.,
2019) and Chainer (Tokui et al., 2015) use dynamic flows.
Static flows are pre-compiled and remain constant
throughout the repeated batch calculations, while dynamic
flows are created by the interaction between layers in
forward propagation. Static flows are more predictable,
making them easier to optimize and potentially leading to
higher performance; dynamic dataflows have greater
flexibility and usability, as they have larger state space.
The encapsulation of acclibs provides convenience, but may
hide certain specifics and restrict functionalities. While
operators in DL frameworks are easy to use, it may be
challenging to fine-tune computing strategies, use operators
beyond the parameter constraints, or avoid redundant
mechanisms in particular scenarios.

2.2. Java or Python

At present, the primary advantages of Python DL
frameworks over the Java ones are user-friendliness and
flexibility. Java frameworks, like DL4j and Deep Java
Library (DJL) (Feenster et al.), typically adhere to
conventional Java programming patterns, which are
proficient in managing complex relations, but may be
cumbersome for progress-oriented tasks such as executing
DNNs. Relatively, their APIs are more complex and overly
encapsulated. In DL4j and DJL, DNNSs are created using a
series of chained invocations to builders, allowing for
flexible hyperparameter configuration but may need a
substantial amount of code. The training process is
encapsulated into objects, including Trainer and Listener,
which promotes standardization but may conceal certain
details and limit customized options. In DL4j, the model,
optimizer, and loss function are configured in a single
builder, instead of completely decoupled, potentially
compromising flexibility.

Conversely, Java frameworks have advantages over the
Python ones. They can be integrated into Java big-data
ecosystem to harness computing power across different
platforms, particularly beneficial for training large models.
Besides, they leverage Java’s advantages over Python’s
limitations. Java is a compiled language with static
datatype, while Python is an interpreted language using
dynamic datatype. Given their nature, Java is generally
more efficient, robust, and secure. Java uses multiple
threads for parallelism, whereas Python relies on costly
processes. Therefore, Java potentially has higher
parallelism and better hardware utilization. At times,
Python’s simplicity may obscure specifics and impose

constraints, while Java’s complexity can offer advanced
capabilities for tailing solutions to diverse cases.

By capitalizing on Java’s strengths and adopting innovative
designs, it’s feasible to develop a DL framework with ease
of use and efficiency.

3. Characteristics

To develop Alpha&Cu32, the goal is to attain a balance of
usability, high-performance, and scalability. The focus is
not only on the advancement of specific technologies, but
also on the overall coherence of the entire system.

)

= o ‘ E(()Java @ python ‘ o
2 Dragon = ) PyTorch
;W Alpha C++ ’ y

J C

Figure 1. Alpha is implemented by C++ at bottom and Java at top

3.1. Different Levels of APIs

Alpha supports different levels of APIs, including
user-friendly high-level APIs and complex low-level APIs.
The top-level APIs enable Alpha to work as a DL
framework; the lower-level APIs serve as intermediary
zones between the top-level APIs and acclibs, offering
better control over system specifics. Users can overcome
the limitations of higher-level APIs via lower-level APIs, to
directly manipulate memory addresses, adjust computing
strategies, and circumvent certain mechanisms. Based on
different levels of APIs, it’s feasible to develop various
applications, even a different DL framework.

3.2. Easy-to-use

Alpha’s high-level APIs are succinct and easy to use,
incorporating the facade pattern, factory pattern, and
chained invocation. To facilitate programming and
identifying key information, the naming conventions are
brief and minimize the use of capital letters. The coding
style combines the elements of Java and Python, making it
recognizable to users of both languages.

Alpha supports dynamic dataflows for DNNs. The provided
operators resemble mathematical formulas in their structure.
Hyperparameters can be specified using constructors and
factories, and further modified through chain invocations.
To construct a directed computational graph of DNNS, users
can easily create a subclass of Module and override the
forward method. Backpropagation can be accomplished
with the assistance of automatic differentiation. Figure 2
illustrates a relevant example.

3.3. Scalability

As a Java application, Alpha is platform-independent and
can be integrated into Java big-data frameworks such as
Hadoop (Cutting et al.) and Spark (Paszke et al., 2010).
Its multi-layer architecture separates the hardware specifics
from the top layers, enabling polymorphism for different
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Figure 2. Using Alpha’s high-level APIs to construct and train DNNs

types of devices. Alpha can utilize specific devices based
on the appropriate underlying layers, while maintaining the
stability of upper layers.

3.4. High-performance

Alpha utilizes GPUs through cu32, whose kernel functions
are well-optimized. Some kernels are general solutions to
ensure minimum performance thresholds, while others are
designed to enhance effectiveness in specific contexts.
Alpha’s async APIs enable the concurrent execution of
operators, leading to enhanced parallelism and hardware
utilization. Alpha can optimize static dataflows within
dynamic dataflows, through inplace operators, fused
operators, parallel execution of branches, and etc.

Alpha uses memory-pools to cache memory blocks, to
minimize the overhead required for memory-allocation
system-calls. Memory-pools work on the abstract malloc
and free methods, which are implemented by lower-level
components. A certain amount of pinned memory is
managed to act as a cache between JVM and devices, to
expedite data transmission through direct memory access.
To save bandwidth, images are stored&transferred using
int8, and converted to float datatypes at destination devices.

4.1. Native Libraries

Native libraries contain the most fundamental computing
logic and strategies. Cu32 comprises 14 native
dynamic-link-libraries. Unlike cuDNN (Chetlur et al.,
2014), cu32 is entirely developed in C++ without ptx or
sass code. Although this approach may not achieve the
maximum hardware efficacy, it offers better portability,
readability, and maintainability. Trading 10% speed for
these benefits is acceptable; 100% is not. The code in cu32
is well-organized for better understanding. The computing
strategies are mostly placed outside of cu32 to facilitate
strategy adjustments. Cu32 has been tested on GTX1050,
RTX3060ti, and RTX4090 GPUs, and achieves comparable
performance to cuDNN in many cases.

4.2. EngineBase

EngineBase defines a set of computing primitives presented
as abstract methods. Based on polymorphism, various
subclasses of EngineBase can be implemented for specific
devices. CudaFloat32EngineBase is an example of such
subclasses, which serves as a higher-level architecture of
cu32. This subclass maps Java methods to cu32 functions
via JNI (Java native interface), and the computing strategies

can be modified by configuring its properties.
4. Architectures

As shown in Figure 3, Alpha is composed of 7 layers. 4.3. EngineCore

EngineCore encapsulates the primitives of EngineBase, to
shield hardware details from higher-level layers. It includes
mechanisms like memory-pool, parameter-check, and
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Figure 3. Alpha’s 7-layer architecture
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error-handling, where the memory-pool is abstract and
customizable. EngineCore can work on specific devices via
suitable EngineBases. For instance, It can perform float32
operations on GPUs using CudaFloat32EngineBase.

4.4. Engine

Engine encapsulates EngineCore to enhance usability, by
warping parameters and 64bit addresses in Tensor objects.
The last dimension of Tensors is implicitly padded to 4x,
to vectorize memory access using 128bit units. Tensors
play a crucial role in automatic differentiation, and act as
semaphores to coordinate operators. Tensors can be released
manually or automatically by JVM (Java virtual machine).
’Sync’ and ’check’ properties act as the switches of async
APIs and parameter-check. Typically, the variability of
computational graphs in DNNSs is limited and predictable.
Therefore, checking parameters at the initial few batches is
necessary; at every time could be wasteful. Once certain
batches have been processed to ensure correctness, such 2
properties can be set to false, to enable async APIs and
disable parameter-check, thereby improving efficiency.
ImageEngine provides operators for image processing and
augmentation, with the ability to deal with hyper-spectrum
images. SyncRandomEngine generates random numbers
using 1 thread, whereas Engine uses multi-threads. These 2
methods may result in different quality of random numbers.

4.5. UnitCore

UnitCores are applications of Engines, which are used to
construct the acyclic computational graphs of DNNs. Their
public forward method establishes connections between
UnitCores via callbacks, to represent the directed edges.
The protected backward method is invoked by automatic
differentiation. In this process, UnitCores gather gradients
from their successors along the resolved edges, and then
calculate gradients for their predecessors.

4.6. Unit

Units are built upon UnitCores, which have weights and
hierarchical structures. A cyclic graphs formed by Units
can be transformed to an acyclic graph composed of
UnitCores. Compared to the garbage collection of JVM, the
gc method of Unit is more cost-effective and timely for
recycling resources. Units collaborate with DataSets,
LossFunctions, and Optimizers to train DNNs. DataSet
supports multi-thread data loading and preprocessing,
which can run in parallel with DNN-execution through a
buffer. DragonCV and DragonFL are developed for basic
image and file processing.

4.7. Alpha

alpha packaged almost everything. The functionalities can
easily accessed via keywords like alpha.engine, alpha.nn,
alpha.F, alpha.data, alpha.optim, alpha.loss.

5. Techniques
5.1. Asynchronous APIs

Alpha’s asynchronous (async) APIs enable the parallel
execution of multi operators. For example, one CPU thread
can launch many CUDA kernels without blocking. When
executing operators on devices, JVM can undertake work
such as generating logs and managing data structures.
Async APIs are easy to use. Users only need to focus on the
relation among operators, rather than underlying details.
When async APIs are activated, operators promptly return
result Tensors, regardless of whether the computation has
been completed. Each Tensor is associated with a Syncer,
that can be triggered by Tensor.c method. Syncers act as
semaphores to wait for the end of corresponding operators,
and can be programmed to perform tasks like resource
reclamation. Async APIs can be used to optimize dataflows,
by processing unrelated multi branches simultaneously. An
illustrative example is shown in Figure 4.

streaml stream2 stream3

Tensor X = eg. Gaussian (128, 128);
Ganssian S —Ton50r V= ez, Uniforn (128, 128)

cpu_functionl ()

¢ Tensor A = cg. signoid(false, X.c();
A —— Tcnsor B = V. c(). leakyRelu(false) ;

Stginie] LeakyRelu m—— Tensor C = eg.matMul (X, W);
matMul
cpu_function2();
syme: streaml, stre ;

Tensor Y = eg. sun(false, A.c(), B.c(), C.c()

Figure 4. Async APIs enable the concurrent execution of multi
operators alongside CPU instructions. At most 3 operators can be
executed simultaneously in 3 CUDA streams. 2 CPU functions are
performed in parallel with the GPU.

5.2. C-K-S Algorithms: skip zeros in convolution

Zero items (0s) are commonly included in convolutional
operators, such as 0-padding on feature-maps, and
0O-insertion in deconvolution and dilated convolution. These
0Os cause unnecessary calculations and strain on hardware.
To skip these 0s, C-K-S algorithm is proposed, including
ConvV2, KS-deconv, and Sk-dilated. ConvV2 excludes
padded Os, providing a constant factor speedup; KS-deconv
and SK-dilated transform sparse tensors to dense ones,
accelerating ND deconvolution and dilated convolution by
stride™ and dilate™ times. C-K-S is based on math and
not reliant on specific systems. Its operations have minimal
interdependence to comply with the nature of SIMD.
KS-deconv is designed for non-unit-stride deconvolution, to
bypass (stride — 1) Os inserted between adjacent items of
input-feature-maps (ifins). As shown in Figure 35,
KS-deconv has 3 stages: the filters are split into stride’”
parts; each part is used to conduct stride-1 convolution on
the corresponding subset of ifins; the resulting outputs are
composed to obtain the output-feature-maps (ofins). This
kernel-split idea is based on 2 observations. Firstly, among
the patches of ifins, the O-distributions can be categorized
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Figure 5. KS-deconv in backpropagation of 2D conv-layers. In stagel, W (3 x 3) is rotated 180 degrees, and split to Coo(2 % 2), Co1(2 x 1),
C10(1 x 2) and C11(1 x 1). Coo—11 are concatenated to C'(2 x 2 x 2 x 2) which has continuous memory. In stage2, Coo—11 are respectively
used to perform stride-1 convolution with VY, and the outputs are Ogo, Oo1, O10 and Oq1. In stage3, Ogo—11 are composed to obtain VX.

into strideN classes, which can be distinguished by the
(coordinates%stride) of these patches. Secondly, each
item in ofins can be calculated, by performing a dot-product
on two nonzero segmentations where are respectively
derived from the filters and ifins.

Sk-dilated is used for dilated convolution, where sparse
filters have (dilate — 1) Os placed between adjacent items.
In each filter, except for the channel and batch axes, the
coordinates of nonzero items must be integral multiples of
dilate. Adhering to this rule, Sk-dilated does not add Os to
filters. Instead, for each dot-product of dilated convolution,
it fetches items in filters with unit step-size, and selects
items in ifins with steps-size of dilate.

ConvV?2 utilizes filter-trimming to exclude padded Os at the
boundary of ifins, thereby enabling access only to nonzero
elements in the central region. This technique is achieved by
moving pointers and constraining memory access, without
auxiliary workspace. Filter-trimming’s efficacy is positively
correlated to the size of 0-padding, so it usually plays a
greater role on small feature-maps.

Filter-trimming has been integrated in KS-deconv and
Sk-dilated, to develop their V2 version. As illustrated in
Figure 6, KS-deconv-V2 are compared with PyTorch-1.12
in backpropagation on RTX 3060ti. As the feature-maps
become smaller, the speed of KS-deconv-V2 increases.

Figure 6. Compare KS-deconv-V2 with PyTorch. The stride is 2,
and the tensors are represented in NHWC format. On the left side,
the filter size is (3 x 3) with a padding of 1; on the right side, the
filer size is (5 x 5) with a padding of 2.

5.3. Im2col-Winograd

Winograd (Lavin & S.Gray, 2016) has been extensively used
to accelerate convolutions. When using filters of size r to

calculate n outputs, Winograd F(n,r) needs (n + r — 1)
multiplications, less than (n * r) multiplications required by
standard convolution, thereby improving efficiency.
Previous studies have implemented Winograd on GPUs
to accelerate 2D convolution (Castro et al., 2021; Chetlur
et al., 2014; Yan et al., 2020; Yang & Lai, 2021). These
studies mainly use the 2D variant of Winograd, and arrange
tensors in NCHW or CHWN format. The fused-Winograd2D
is limited to (3 x 3) filters, while the non-fused has been
applied to other filter sizes but requires a large amount of
memory to store intermediate variables. NHWC is a widely
used tensor format, but it is not well-suited for Winograd2D
due to its discontinuous memory access, which reduces the
hit ratio of GPU L2-cache.

To implement a versatile and flexible fused-Winograd on
GPUs for NHWC format, we propose Im2col-Winograd. As
shown in Figure 8, Im2col-Winograd has 2 stages: lower
the filters and feature-maps to 2D matrices through Im2col;
cumulatively apply 1D Winograd on these matrices. The 2
stages are integrated into a single operator, eliminating the
need for auxiliary memory.

Im2col Winograd

= 4state > F23) F(3.2) 23 filteruian

F(7,2) F(6,3) F(5,4) F(4,5) F(4,5) F(3,6) F(2,7)

ﬂ F(10,7) F(8,9) 7Tor9 filteryian

Figure 7. Im2col-Winograd with 4/8/16 states.

257 filteryian

F(n,r)uses & = (n+r — 1) variables to get n outputs, so it
can be denoted as « state Winograd. Fused-Winograd loads,
transforms, and stores the data in shared-memory, where the
max shared-memory size for 1 block is 49152 bytes. To hide
memory latency and maximize item-reuse, GPUs typically
perform 8 * (8 x 8) outer products via 256 threads within a
block. To satisfy such outer products, the state v must < 16,
and ideally a power of 2. F(2 x 2,3 x 3) for (3 x 3) filters
has 16 states, exactly meeting the upper limit.

As shown in Figure 7, 4/8/16 state Im2col-Winograd has
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Figure 8. Img2col-Winograd F(2,3). The filter W and input-feature-map X are converted to 2D matrices through Im2col. The items
selected by sliding windows are used to perform F'(2, 3), and the results are accumulated to the output-feature-map Y.

been implemented to cover 2-9 filter-sizes for both the
forward and backward propagation. Compared to GEMM
convolution, the 4/8 state Im2col-Winograd exhibits almost
no loss of precision, whereas the 16-state version yields a
relative difference of 10~%. Both the 8 and 16 state versions
can be manually enabled or disabled.

Im2col-Winograd is more flexible and lightweight than
Winograd2D. Unlike Winograd2D, Im2col-Winograd only
imposes constraints on one dimension of filters, as opposed
to two. In some cases, Im2col-Winograd requires fewer
resources than Winograd2D, to achieve the same
acceleration. For instance, both F(2 x 2,3 x 3) and F'(6, 3)
theoretically reduce the multiplication to 1/2.25. However,
the latter needs 8 states and fetches 33/6 items to calculate
an output, while the former uses 16 states and selects 25/4
items. Moreover, Im2col-Winograd can be used for ND
convolution, by extending Im2col from 2D to ND.
Im2col-Winograd has been compared with cuDNN-8.9
(Chetlur et al., 2014) on RTX3060ti GPU. As shown in
Figure 9, Im2col-Winograd especially its 16-state version is
more efficient than cuDNN in many cases.

Figure 9. Compare Im2col-Winograd with cuDNN. F(6,3),
F(4,5), F(10,7) and F(8,9) are performed with (3 x 3), (5 x 5),
(7 x 7) and (9 x 9) filters respectively. The tensors are represented
in NHWC format. In forward propagation, filters are transposed
from NHWC to HWCN format with a small expense to improve
bandwidth. ’*’ means ignoring the time of filter-transposition.

5.4. Parallel Random Number Generation

Cu32 generates pseudo-random numbers via multi threads.
Each thread performs linear congruence on global seeds to
obtain its local seeds, and then conducts linear congruence
on local seeds to produce random numbers. Users can
specify global seeds or have them randomly generated.

The quality of random numbers used to initialize DNNs
significantly impacts the convergence. We have found 2
factors that affect such quality: the volume of random
numbers generated by individual threads, and the degree of
randomness introduced in local seeds. Figure 10 illustrates
the influence of these 2 factors on the convergence of
ResNet18 on Cifar10.
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Figure 10. The quality of random numbers impacts the
convergence. (1, m) means performing n times linear-congruence
on global seeds, and producing m random numbers per thread

5.5. Inplace Operators and Fused Operator

In DNNGs, certain operators have predetermined combination
orders, and therefore can be fused or inplace to save memory
and bandwidth. Furthermore, compared to DL frameworks
that process the code, programmers often have more prior
knowledge of the DNNSs. This enables them to undertake
certain optimizations on the computational graphs using
inplace or fused operators. Alpha provides inplace and fused
operators for users, as demonstrated in Figure 11.

n. batchNorm_leakyRelu (2. batchNorm(inplace, feature_dim), an leakyRelu(negative slope));

. batchNorm_relu (. batchNorm (feature_dim), sz relu(inplace));
nn. global_batchNorm_leakyRelu (. global_batchNorm(feature_dim), . leakyRelu();
nn. affine_leakyRelu(nn affine (inplace, fi m, akyRelu() ;

. nn. dropout (inplace,

nonzero_prop)) ;

£. log_sof tmax (inplace,

X5

Joss. sof tmax_crossEntropy (features) ;

igmoid_binaryCrossEntropy () ;

. adjust_color (inplace, X1.to_int8(inplace), brightness, saturation, contrast);

fine (). rotate (theta). shear (shy, shx).translate(ty, tx)

. transform(X1, inplace, height, width);
Figure 11. The inplace and fused operators APIs of Alpha.

5.6. Accuracy Optimizations

For reduction operators, Kahan-summation is used to
reduce errors. Besides, *minimizing float operations’ and
’avoiding numerical overflow’ can be balanced. For
example, when computing the mean of collection
{z1,22,...,2n}, % 3x; has better precision than X +-z;
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due its fewer float operations, but it takes higher risk of
numerical overflow. To compromise between these 2
methods, the collection can be divided into M segments,
and the sum of each segment S; can be calculated to
determine the average %ZSZ».

GELU (Hendrycks & Gimpe, 2016) is commonly estimated
as  0.5(1 + tanh[\/m/2(x +0.0447152%)]), with its derivative
ﬁ(l - %ﬁwus))\u:—(1.59577z+0.214064z3)- However, e™*
may yield inf leading to NaN derivative, when = < 0. To

avoid this, the derivative can be calculated as
e ™ 1 e (u—0.14271%)
1+c*“( - 14e—u )

6. Experiments

To evaluate Alpha’s performance, certain comparisons with
PyTorch&cuDNN have been conducted on Cifarl0 and
ILSVRC2012. PyTorch version is 1.12, CUDA version is
11.5, and the version of Alpha&cu32is 1.1 or 1.2.

6.1. Methods and Conditions

Several kinds of optimizers (Rumehart et al., 1986;
Tieleman & Hinton, 2012; Kingma & Ba, 2015; Loshchilov
& Hutter, 2017; Liu et al., 2019) were utilized to train
DNNs (Szegedy et al., 2015; Simonyan & Zisserman, 2015;
He et al., 2016; Hu et al., 2018), with softmax and 0.001
learning-rate on Cifar10 and ILSVRC2012:

¢ CifarlO: the input shape is (32 x 32), the label space is
10, the batchsize is 512, and the data was processed on
an RTX3060ti GPU with an i5-12490 CPU.

* ILSVRC2012: the input shape is (128 x 128), the label
space is 1000, the batchsize is 256, and the data was
processed on an RTX4090 with an i19-13900KF CPU.
Alpha uses 16 threads to load and preprocess data,
while PyTorch utilizes 4 workers, which is the optimal
configuration we have observed.

DNNs of Alpha and PyTorch were identical, and underwent
the same initialization, training, and testing procedures. The
activation function is LeakyRelu (Maas et al., 2013).
Specific convolutional and full-connect layers were
adjusted to accommodate the tensor shape, while the
backbone of DNNs remains unaltered. BatchNorm (Toffe &
Szegedy, 2015) was integrated into VGG and GoogLeNet,
to prevent gradient-vanishing and expedite convergence.
Full-connect and convolutional layers were initialized using
kaiming-uniform (He et al., 2015).

The labels were encoded to one-hot formats, and the pixel
values were linearly scaled to fall within [—1, 1]. The loss-
function value was recorded every 10 steps. To plot the loss
curves of [ILSVRC2012, a sliding window of length 10 was
used to average the loss-function values without overlap.

6.2. Results and Discussions

Table 1-2 present the performance of Alpha and PyTorch.
The loss curves are shown in figure 12-35 in Appendix.

Table 1. Performance on Cifarl0. PyTorch’s data is blue.
Alpha’s data is red. The speed and acceleration of Alpha-1.2 is dark red.

Network * Training Speed Acceleration | Train\Test accuracy | GPUmemory * Reduction | GPU uiilization | CPU uilization | Weight file

2
Mg ag01x
T2 90% 1BW | 15.0% 1067y | 326,
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2
ResNetl8
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Table 2. Performance on ILSVRC2012. PyTorch’s data is blue.
Alpha’s data is red. The speed and acceleration of Alpha-1.2 is dark red.

Network © Training Acceleration | Train set accuracy| GPU memory  Reduction | GPU wilization | CPU wilization | Weight file
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On both datasets, DNNs trained by Alpha or PyTorch show
comparable convergence, accuracy, and efficiency. In terms
of speed and memory-usage, Alpha outperforms PyTorch in
certain scenarios.

Several factors contribute to Alpha’s higher speed
compared to PyTorch. Cu32 provides efficient GPU
operators, while ensuring correctness and accuracy. The
C-K-S algorithm avoids redundant O-calculations in
conv-layers, reducing time complexity and strain on
hardware. Specifically, KS-deconv and Sk-dilated
significantly simplify the backpropagation of conv-layers
with non-unit stride, thereby accelerating the execution of
ResNet and SENet. Im2col-Winograd reduces the cost of
stride-1 conv-layers, especially those with (3 x 3) or (5 x 5)
filters. The concurrent execution offered by async APIs
enhances the power of GPUs, and conceals the execution of
certain CPU functions. The fusion of operators reduces
memory access, lowering the computational cost.

Alpha’s lower memory-usage compared to PyTorch can be
attributed to several reasons. Alpha offers a wider range of
inplace and fused operators than PyTorch; and it tries to
calculate gradients directly within the memory space of
preceding gradients, thereby reducing the need for memory
space to store intermediate variables. In both forward and
backward propagation, Tensors that are no longer required
can be released based on Syncers, thus facilitating the
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recycling of memory blocks. The experiments mentioned in
this paper were carried out using the basic memory pool,
and it is possible to further decrease memory usage by
configuring a more advanced memory-pool to EngineCore.
GPU-utilization is evaluated using 2 metrics: power and
time-slice utilization-rate (UT). Alpha and PyTorch employ
distinct methods to scheduling operators, each offering its
own advantages. In PyTorch, operators are launched by a
single thread, and typically executed in 1 CUDA stream
based on a first-in-first-out order. This approach leads to
higher UT due to less overhead of synchronization between
operators. Conversely, in Alpha, operators are managed via
multi-threads, and executed in multiple CUDA streams
concurrently, enabling higher power. However, this
approach requires heavier synchronization mechanisms,
leading to a lower UT.

CPU-utilization is evaluated by 2 metrics: memory-usage
and time-slice utilization-rate (UT). The memory-usage is
primarily used to indicate the absence of memory leaks, as it
can be influenced by the configuration of the Java or Python
virtual machine. When training DNNs on ILSVRC2012,
Alpha and PyTorch achieve nearly 100% GPU utilization,
suggesting that the speed bottleneck is GPU-computing
rather than the data loading and preprocessing on CPU.
Notably, Alpha’s 16 threads have higher parallelism than
PyTorch’s 4 workers, and therefore result in a higher UT.
Overall, these experimental results are evidence supporting
the correctness and efficiency of Alpha&cu32.

7. Conclusion

This paper introduces the background, characteristics,
architectures, and techniques of Alpha&cu32. Besides, it
demonstrates their correctness and effectiveness, by
benchmarking them against PyTorch&cuDNN on Cifar10
and ILSVRC2012.

Alpha tries to raise Java’s effectiveness in DL field. It
adopts some innovative designs to ensure user-friendliness,
and realizes high-performance through cu32 and specific
techniques. Based on its multi-layer architecture and the
adaptability to Java big-data ecosystem, Alpha achieves
scalability and is capable of aggregating heterogeneous
computing resources.

The source code for Alpha is available for access at {the link
is hidden due to double-blind review }. Subsequent updates
will be aligned with our future works.

Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here
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Figure 12. ILSVRC2012: ResNet18 + Adam, 50 epoch
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Figure 13. ILSVRC2012: ResNet18 + RMSprop, 40 epoch
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Figure 14. ILSVRC2012: ResNet34 + Adam, 50 epoch
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Figure 15. ILSVRC2012: ResNet34 + SGDM, 60 epoch
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Figure 16. ILSVRC2012: ResNet50 + AdamW, 60 epoch

Figure 17. ILSVRC2012: ResNet50 + Adam, 50 epoch
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Figure 23. ILSVRC2012: SENet + Adam, 60 epoch
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Figure 32. Cifar10: VGG19 + Adam, 40 epoch Figure 33. Cifar10: VGG19 + SGDM, 40 epoch
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Figure 34. Cifar10: SENet + Adam, 30 epoch
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Figure 35. Cifar10: SENet + SGDM, 35 epoch



