
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Dragon-Alpha&cu32:
Fully Open-source Java Deep-Learning Framework

And High-Performance CUDA Library

Anonymous Authors1

Abstract
Java is powerful, but its potential in deep-learning
(DL) realm remains untapped. At present, Python
DL frameworks are predominantly preferred over
those based on Java, mainly attributed to their
superior usability and flexibility. To leverage
Java’s capabilities, Dragon-Alpha, a Java tensor
computing framework, has been developed. The
primary goal of Alpha is to provide ease of use,
high-performance, and scalability. Alpha offers
high-level user-friendly APIs for DL, and other
levels of APIs to meet diverse requirements.
Alpha achieves GPU acceleration via cu32
library, and improves efficiency through
techniques like async APIs, C-K-S algorithm,
Im2col-Winograd, and fused operators. Alpha
has the potential to consolidate computing power
across heterogeneous platforms and devices,
based on its multi-layer architecture and
compatibility with Java big-data ecosystem.
Alpha&cu32 are fully open-source, with no
reliance on external libraries. Experiments show
that Alpha&cu32 surpass PyTorch&cuDNN on
Cifar10 and ILSVRC2012 in certain scenarios.

1. Introduction
Deep learning (DL) is a highly hot field of artificial
intelligence. Deep neural networks (DNNs) have been
widely applied in diverse fields, yielding remarkable
achievements. However, the impressive capabilities of
DNNs come with increased complexity. To simplify the
representation of DNNs and accelerate their execution, DL
frameworks have been developed.
Python DL frameworks (Paszke et al., 2019; Abadi et al.,
2016; Jia et al., 2014; Tokui et al., 2015; Chollet) have
gained immense popularity, due to their user-friendly and

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

flexible nature. On the other hand, Java DL frameworks
(Gibson et al., 2016; Feenster et al.) are not as popular as
their Python counterparts, mainly because of their more
intricate APIs and limited adaptability. However, Java itself
has many benefits, including robustness, speed, flexibility,
platform independence, community support, and a strong
big-data ecosystem, suggesting that Java’s potential in DL
field has not been fully exploited.
For efficiency, DL frameworks integrate acceleration
libraries (acclibs) to take advantage of parallel processors
like GPUs, CPUs, and FPGAs. Nevertheless, many
widely-used GPU acclibs such as cuBLAS and cuDNN
(Chetlur et al., 2014) are not open-source. The details of
high-performance GPU programming remain somewhat
opaque. As a result, there needs open-source GPU acclibs,
that can help users better understand and utilize GPUs.
To address these issues, Dragon-Alpha&cu32 have been
developed. As a Java tensor computing framework, Alpha
can be used to express and execute DL algorithms. Cu32 is
an efficient acclib for float32 computations on GPUs, and
has been integrated into Alpha. Alpha&cu32 are fully
open-source, and only require JDK and CUDA for
execution. Besides, cu32 adopts C-K-S algorithm and
Im2col-Winograd to accelerate convolution.
In experiments conducted on Cifar10 and ILSVRC2012
datasets, Alpha&Cu32 exhibit comparable efficacy and
convergence to PyTorch&cuDNN, and outperform them in
certain circumstances.

2. Background
2.1. Deep Learning Frameworks
DNNs are multi-layer neural networks, with complex
computational graphs and numerous parameters. Their
complexity allows the learning and expression of
sophisticated patterns, but brings challenges for concise
representation and rapid execution. DL frameworks are
designed to tackle these problems, with ease of use and
efficiency as their key priorities.
DL frameworks offer a set of reusable primitives, based on
the commonly used structures of DNNs. These primitives
can be linked to acclibs for faster processing. Users are

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

required to define the forward propagation of DNNs using
these primitives, while the automatic differentiation takes
care of the backpropagation. Such propagation can be
conceptualized as dataflows. Many DL frameworks, like
Caffe (Jia et al., 2014), TensorFlow (Abadi et al., 2016),
Keras (Chollet), and DeepLearning4j (DL4j) (Gibson et al.,
2016), use static flows, whereas PyTorch (Paszke et al.,
2019) and Chainer (Tokui et al., 2015) use dynamic flows.
Static flows are pre-compiled and remain constant
throughout the repeated batch calculations, while dynamic
flows are created by the interaction between layers in
forward propagation. Static flows are more predictable,
making them easier to optimize and potentially leading to
higher performance; dynamic dataflows have greater
flexibility and usability, as they have larger state space.
The encapsulation of acclibs provides convenience, but may
hide certain specifics and restrict functionalities. While
operators in DL frameworks are easy to use, it may be
challenging to fine-tune computing strategies, use operators
beyond the parameter constraints, or avoid redundant
mechanisms in particular scenarios.

2.2. Java or Python
At present, the primary advantages of Python DL
frameworks over the Java ones are user-friendliness and
flexibility. Java frameworks, like DL4j and Deep Java
Library (DJL) (Feenster et al.), typically adhere to
conventional Java programming patterns, which are
proficient in managing complex relations, but may be
cumbersome for progress-oriented tasks such as executing
DNNs. Relatively, their APIs are more complex and overly
encapsulated. In DL4j and DJL, DNNs are created using a
series of chained invocations to builders, allowing for
flexible hyperparameter configuration but may need a
substantial amount of code. The training process is
encapsulated into objects, including Trainer and Listener,
which promotes standardization but may conceal certain
details and limit customized options. In DL4j, the model,
optimizer, and loss function are configured in a single
builder, instead of completely decoupled, potentially
compromising flexibility.
Conversely, Java frameworks have advantages over the
Python ones. They can be integrated into Java big-data
ecosystem to harness computing power across different
platforms, particularly beneficial for training large models.
Besides, they leverage Java’s advantages over Python’s
limitations. Java is a compiled language with static
datatype, while Python is an interpreted language using
dynamic datatype. Given their nature, Java is generally
more efficient, robust, and secure. Java uses multiple
threads for parallelism, whereas Python relies on costly
processes. Therefore, Java potentially has higher
parallelism and better hardware utilization. At times,
Python’s simplicity may obscure specifics and impose

constraints, while Java’s complexity can offer advanced
capabilities for tailing solutions to diverse cases.
By capitalizing on Java’s strengths and adopting innovative
designs, it’s feasible to develop a DL framework with ease
of use and efficiency.

3. Characteristics
To develop Alpha&Cu32, the goal is to attain a balance of
usability, high-performance, and scalability. The focus is
not only on the advancement of specific technologies, but
also on the overall coherence of the entire system.

Figure 1. Alpha is implemented by C++ at bottom and Java at top

3.1. Different Levels of APIs
Alpha supports different levels of APIs, including
user-friendly high-level APIs and complex low-level APIs.
The top-level APIs enable Alpha to work as a DL
framework; the lower-level APIs serve as intermediary
zones between the top-level APIs and acclibs, offering
better control over system specifics. Users can overcome
the limitations of higher-level APIs via lower-level APIs, to
directly manipulate memory addresses, adjust computing
strategies, and circumvent certain mechanisms. Based on
different levels of APIs, it’s feasible to develop various
applications, even a different DL framework.

3.2. Easy-to-use
Alpha’s high-level APIs are succinct and easy to use,
incorporating the facade pattern, factory pattern, and
chained invocation. To facilitate programming and
identifying key information, the naming conventions are
brief and minimize the use of capital letters. The coding
style combines the elements of Java and Python, making it
recognizable to users of both languages.
Alpha supports dynamic dataflows for DNNs. The provided
operators resemble mathematical formulas in their structure.
Hyperparameters can be specified using constructors and
factories, and further modified through chain invocations.
To construct a directed computational graph of DNNs, users
can easily create a subclass of Module and override the
forward method. Backpropagation can be accomplished
with the assistance of automatic differentiation. Figure 2
illustrates a relevant example.

3.3. Scalability
As a Java application, Alpha is platform-independent and
can be integrated into Java big-data frameworks such as
Hadoop (Cutting et al.) and Spark (Paszke et al., 2010).
Its multi-layer architecture separates the hardware specifics
from the top layers, enabling polymorphism for different

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

Figure 2. Using Alpha’s high-level APIs to construct and train DNNs

types of devices. Alpha can utilize specific devices based
on the appropriate underlying layers, while maintaining the
stability of upper layers.

3.4. High-performance
Alpha utilizes GPUs through cu32, whose kernel functions
are well-optimized. Some kernels are general solutions to
ensure minimum performance thresholds, while others are
designed to enhance effectiveness in specific contexts.
Alpha’s async APIs enable the concurrent execution of
operators, leading to enhanced parallelism and hardware
utilization. Alpha can optimize static dataflows within
dynamic dataflows, through inplace operators, fused
operators, parallel execution of branches, and etc.
Alpha uses memory-pools to cache memory blocks, to
minimize the overhead required for memory-allocation
system-calls. Memory-pools work on the abstract malloc
and free methods, which are implemented by lower-level
components. A certain amount of pinned memory is
managed to act as a cache between JVM and devices, to
expedite data transmission through direct memory access.
To save bandwidth, images are stored&transferred using
int8, and converted to float datatypes at destination devices.

4. Architectures
As shown in Figure 3, Alpha is composed of 7 layers.

4.1. Native Libraries
Native libraries contain the most fundamental computing
logic and strategies. Cu32 comprises 14 native
dynamic-link-libraries. Unlike cuDNN (Chetlur et al.,
2014), cu32 is entirely developed in C++ without ptx or
sass code. Although this approach may not achieve the
maximum hardware efficacy, it offers better portability,
readability, and maintainability. Trading 10% speed for
these benefits is acceptable; 100% is not. The code in cu32
is well-organized for better understanding. The computing
strategies are mostly placed outside of cu32 to facilitate
strategy adjustments. Cu32 has been tested on GTX1050,
RTX3060ti, and RTX4090 GPUs, and achieves comparable
performance to cuDNN in many cases.

4.2. EngineBase
EngineBase defines a set of computing primitives presented
as abstract methods. Based on polymorphism, various
subclasses of EngineBase can be implemented for specific
devices. CudaFloat32EngineBase is an example of such
subclasses, which serves as a higher-level architecture of
cu32. This subclass maps Java methods to cu32 functions
via JNI (Java native interface), and the computing strategies
can be modified by configuring its properties.

4.3. EngineCore
EngineCore encapsulates the primitives of EngineBase, to
shield hardware details from higher-level layers. It includes
mechanisms like memory-pool, parameter-check, and

Figure 3. Alpha’s 7-layer architecture

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

error-handling, where the memory-pool is abstract and
customizable. EngineCore can work on specific devices via
suitable EngineBases. For instance, It can perform float32
operations on GPUs using CudaFloat32EngineBase.

4.4. Engine
Engine encapsulates EngineCore to enhance usability, by
warping parameters and 64bit addresses in Tensor objects.
The last dimension of Tensors is implicitly padded to 4x,
to vectorize memory access using 128bit units. Tensors
play a crucial role in automatic differentiation, and act as
semaphores to coordinate operators. Tensors can be released
manually or automatically by JVM (Java virtual machine).
’Sync’ and ’check’ properties act as the switches of async
APIs and parameter-check. Typically, the variability of
computational graphs in DNNs is limited and predictable.
Therefore, checking parameters at the initial few batches is
necessary; at every time could be wasteful. Once certain
batches have been processed to ensure correctness, such 2
properties can be set to false, to enable async APIs and
disable parameter-check, thereby improving efficiency.
ImageEngine provides operators for image processing and
augmentation, with the ability to deal with hyper-spectrum
images. SyncRandomEngine generates random numbers
using 1 thread, whereas Engine uses multi-threads. These 2
methods may result in different quality of random numbers.

4.5. UnitCore
UnitCores are applications of Engines, which are used to
construct the acyclic computational graphs of DNNs. Their
public forward method establishes connections between
UnitCores via callbacks, to represent the directed edges.
The protected backward method is invoked by automatic
differentiation. In this process, UnitCores gather gradients
from their successors along the resolved edges, and then
calculate gradients for their predecessors.

4.6. Unit
Units are built upon UnitCores, which have weights and
hierarchical structures. A cyclic graphs formed by Units
can be transformed to an acyclic graph composed of
UnitCores. Compared to the garbage collection of JVM, the
gc method of Unit is more cost-effective and timely for
recycling resources. Units collaborate with DataSets,
LossFunctions, and Optimizers to train DNNs. DataSet
supports multi-thread data loading and preprocessing,
which can run in parallel with DNN-execution through a
buffer. DragonCV and DragonFL are developed for basic
image and file processing.

4.7. Alpha
alpha packaged almost everything. The functionalities can
easily accessed via keywords like alpha.engine, alpha.nn,
alpha.F, alpha.data, alpha.optim, alpha.loss.

5. Techniques
5.1. Asynchronous APIs
Alpha’s asynchronous (async) APIs enable the parallel
execution of multi operators. For example, one CPU thread
can launch many CUDA kernels without blocking. When
executing operators on devices, JVM can undertake work
such as generating logs and managing data structures.
Async APIs are easy to use. Users only need to focus on the
relation among operators, rather than underlying details.
When async APIs are activated, operators promptly return
result Tensors, regardless of whether the computation has
been completed. Each Tensor is associated with a Syncer,
that can be triggered by Tensor.c method. Syncers act as
semaphores to wait for the end of corresponding operators,
and can be programmed to perform tasks like resource
reclamation. Async APIs can be used to optimize dataflows,
by processing unrelated multi branches simultaneously. An
illustrative example is shown in Figure 4.

Figure 4. Async APIs enable the concurrent execution of multi
operators alongside CPU instructions. At most 3 operators can be
executed simultaneously in 3 CUDA streams. 2 CPU functions are
performed in parallel with the GPU.

5.2. C-K-S Algorithms: skip zeros in convolution
Zero items (0s) are commonly included in convolutional
operators, such as 0-padding on feature-maps, and
0-insertion in deconvolution and dilated convolution. These
0s cause unnecessary calculations and strain on hardware.
To skip these 0s, C-K-S algorithm is proposed, including
ConvV2, KS-deconv, and Sk-dilated. ConvV2 excludes
padded 0s, providing a constant factor speedup; KS-deconv
and SK-dilated transform sparse tensors to dense ones,
accelerating ND deconvolution and dilated convolution by
strideN and dilateN times. C-K-S is based on math and
not reliant on specific systems. Its operations have minimal
interdependence to comply with the nature of SIMD.
KS-deconv is designed for non-unit-stride deconvolution, to
bypass (stride− 1) 0s inserted between adjacent items of
input-feature-maps (ifms). As shown in Figure 5,
KS-deconv has 3 stages: the filters are split into strideN

parts; each part is used to conduct stride-1 convolution on
the corresponding subset of ifms; the resulting outputs are
composed to obtain the output-feature-maps (ofms). This
kernel-split idea is based on 2 observations. Firstly, among
the patches of ifms, the 0-distributions can be categorized

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

Figure 5. KS-deconv in backpropagation of 2D conv-layers. In stage1, W (3× 3) is rotated 180 degrees, and split to C00(2× 2), C01(2× 1),
C10(1× 2) and C11(1× 1). C00−11 are concatenated to C(2× 2× 2× 2) which has continuous memory. In stage2, C00−11 are respectively
used to perform stride-1 convolution with ∇Y , and the outputs are O00, O01, O10 and O11. In stage3, O00−11 are composed to obtain ∇X.

into strideN classes, which can be distinguished by the
(coordinates%stride) of these patches. Secondly, each
item in ofms can be calculated, by performing a dot-product
on two nonzero segmentations where are respectively
derived from the filters and ifms.
Sk-dilated is used for dilated convolution, where sparse
filters have (dilate− 1) 0s placed between adjacent items.
In each filter, except for the channel and batch axes, the
coordinates of nonzero items must be integral multiples of
dilate. Adhering to this rule, Sk-dilated does not add 0s to
filters. Instead, for each dot-product of dilated convolution,
it fetches items in filters with unit step-size, and selects
items in ifms with steps-size of dilate.
ConvV2 utilizes filter-trimming to exclude padded 0s at the
boundary of ifms, thereby enabling access only to nonzero
elements in the central region. This technique is achieved by
moving pointers and constraining memory access, without
auxiliary workspace. Filter-trimming’s efficacy is positively
correlated to the size of 0-padding, so it usually plays a
greater role on small feature-maps.
Filter-trimming has been integrated in KS-deconv and
Sk-dilated, to develop their V2 version. As illustrated in
Figure 6, KS-deconv-V2 are compared with PyTorch-1.12
in backpropagation on RTX 3060ti. As the feature-maps
become smaller, the speed of KS-deconv-V2 increases.

Figure 6. Compare KS-deconv-V2 with PyTorch. The stride is 2,
and the tensors are represented in NHWC format. On the left side,
the filter size is (3× 3) with a padding of 1; on the right side, the
filer size is (5× 5) with a padding of 2.

5.3. Im2col-Winograd
Winograd (Lavin & S.Gray, 2016) has been extensively used
to accelerate convolutions. When using filters of size r to

calculate n outputs, Winograd F (n, r) needs (n + r − 1)
multiplications, less than (n ∗ r) multiplications required by
standard convolution, thereby improving efficiency.
Previous studies have implemented Winograd on GPUs
to accelerate 2D convolution (Castro et al., 2021; Chetlur
et al., 2014; Yan et al., 2020; Yang & Lai, 2021). These
studies mainly use the 2D variant of Winograd, and arrange
tensors in NCHW or CHWN format. The fused-Winograd2D
is limited to (3× 3) filters, while the non-fused has been
applied to other filter sizes but requires a large amount of
memory to store intermediate variables. NHWC is a widely
used tensor format, but it is not well-suited for Winograd2D
due to its discontinuous memory access, which reduces the
hit ratio of GPU L2-cache.
To implement a versatile and flexible fused-Winograd on
GPUs for NHWC format, we propose Im2col-Winograd. As
shown in Figure 8, Im2col-Winograd has 2 stages: lower
the filters and feature-maps to 2D matrices through Im2col;
cumulatively apply 1D Winograd on these matrices. The 2
stages are integrated into a single operator, eliminating the
need for auxiliary memory.

Figure 7. Im2col-Winograd with 4/8/16 states.

F (n, r) uses α = (n+r−1) variables to get n outputs, so it
can be denoted as α state Winograd. Fused-Winograd loads,
transforms, and stores the data in shared-memory, where the
max shared-memory size for 1 block is 49152 bytes. To hide
memory latency and maximize item-reuse, GPUs typically
perform 8 ∗ (8× 8) outer products via 256 threads within a
block. To satisfy such outer products, the state α must ≤ 16,
and ideally a power of 2. F (2× 2, 3× 3) for (3× 3) filters
has 16 states, exactly meeting the upper limit.
As shown in Figure 7, 4/8/16 state Im2col-Winograd has

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

Figure 8. Img2col-Winograd F (2, 3). The filter W and input-feature-map X are converted to 2D matrices through Im2col. The items
selected by sliding windows are used to perform F (2, 3), and the results are accumulated to the output-feature-map Y .

been implemented to cover 2-9 filter-sizes for both the
forward and backward propagation. Compared to GEMM
convolution, the 4/8 state Im2col-Winograd exhibits almost
no loss of precision, whereas the 16-state version yields a
relative difference of 10−4. Both the 8 and 16 state versions
can be manually enabled or disabled.
Im2col-Winograd is more flexible and lightweight than
Winograd2D. Unlike Winograd2D, Im2col-Winograd only
imposes constraints on one dimension of filters, as opposed
to two. In some cases, Im2col-Winograd requires fewer
resources than Winograd2D, to achieve the same
acceleration. For instance, both F (2× 2, 3× 3) and F (6, 3)

theoretically reduce the multiplication to 1/2.25. However,
the latter needs 8 states and fetches 33/6 items to calculate
an output, while the former uses 16 states and selects 25/4
items. Moreover, Im2col-Winograd can be used for ND
convolution, by extending Im2col from 2D to ND.
Im2col-Winograd has been compared with cuDNN-8.9
(Chetlur et al., 2014) on RTX3060ti GPU. As shown in
Figure 9, Im2col-Winograd especially its 16-state version is
more efficient than cuDNN in many cases.

0

5000

10000

15000

20000

64×128×128×64 128×96×96×64 256×64×64×64 128×48×48×128 256×32×32×128 128×24×24×256 256×16×16×256 128×12×12×512 256×8×8×512 128×6×6×1024

G
flo

p/
s

Dimension

Im2col-Winograd F(6, 3)
Im2col-Winograd F(6, 3)*
cuDNN-Fused-Winograd
cuDNN-Implicit-Precomp-GEMM-NCHW
cuDNN-Implicit-Precomp-GEMM-NHWC

0

5500

11000

16500

22000

32×128×128×64 32×66×66×128 32×64×64×128 128×48×48×128 128×34×34×128 128×32×32×128 128×18×18×256 128×16×16×256 128×10×10×512 128×8×8×512

G
flo

p/
s

Dimension

Im2col-Winograd F(4, 5)

Im2col-Winograd F(4, 5)*

cuDNN-Implicit-Precomp-GEMM-NCHW

cuDNN-Implicit-Precomp-GEMM-NHWC

0

6000

12000

18000

24000

30000

32×128×128×64 32×120×120×64 64×112×112×64 64×80×80×64 128×64×64×64 64×40×40×128 128×32×32×128 64×20×20×256 128×16×16×256 64×10×10×512

G
F

lo
p/

s

Dimension

Im2col-Winograd F(10, 7)
Im2col-Winograd F(10, 7)*
cuDNN-Implicit-Precomp-GEMM-NCHW
cuDNN-Implicit-Precomp-GEMM-NHWC

0

6000

12000

18000

24000

30000

32×128×128×64 32×124×124×64 32×96×96×64 128×64×64×64 128×60×60×64 128×48×48×64 128×32×32×128 128×28×28×128 128×16×16×256 128×8×8×512

G
flo

p/
s

Dimension

Im2col-Winograd F(8, 9)
Im2col-Winograd F(8, 9)*
cuDNN-Implicit-Precomp-GEMM-NCHW
cuDNN-Implicit-Precomp-GEMM-NHWC

Figure 9. Compare Im2col-Winograd with cuDNN. F (6, 3),
F (4, 5), F (10, 7) and F (8, 9) are performed with (3× 3), (5× 5),
(7× 7) and (9× 9) filters respectively. The tensors are represented
in NHWC format. In forward propagation, filters are transposed
from NHWC to HWCN format with a small expense to improve
bandwidth. ’*’ means ignoring the time of filter-transposition.

5.4. Parallel Random Number Generation
Cu32 generates pseudo-random numbers via multi threads.
Each thread performs linear congruence on global seeds to
obtain its local seeds, and then conducts linear congruence
on local seeds to produce random numbers. Users can
specify global seeds or have them randomly generated.

The quality of random numbers used to initialize DNNs
significantly impacts the convergence. We have found 2
factors that affect such quality: the volume of random
numbers generated by individual threads, and the degree of
randomness introduced in local seeds. Figure 10 illustrates
the influence of these 2 factors on the convergence of
ResNet18 on Cifar10.

Figure 10. The quality of random numbers impacts the
convergence. (n,m) means performing n times linear-congruence
on global seeds, and producing m random numbers per thread

5.5. Inplace Operators and Fused Operator
In DNNs, certain operators have predetermined combination
orders, and therefore can be fused or inplace to save memory
and bandwidth. Furthermore, compared to DL frameworks
that process the code, programmers often have more prior
knowledge of the DNNs. This enables them to undertake
certain optimizations on the computational graphs using
inplace or fused operators. Alpha provides inplace and fused
operators for users, as demonstrated in Figure 11.

Figure 11. The inplace and fused operators APIs of Alpha.

5.6. Accuracy Optimizations
For reduction operators, Kahan-summation is used to
reduce errors. Besides, ’minimizing float operations’ and
’avoiding numerical overflow’ can be balanced. For
example, when computing the mean of collection
{x1, x2, ..., xn}, 1

NΣxi has better precision than Σ 1
N xi

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

due its fewer float operations, but it takes higher risk of
numerical overflow. To compromise between these 2
methods, the collection can be divided into M segments,
and the sum of each segment Si can be calculated to
determine the average 1

NΣSi.
GELU (Hendrycks & Gimpe, 2016) is commonly estimated
as 0.5(1 + tanh[

√
π/2(x+ 0.044715x3)]), with its derivative

1
1+eu (1−

eu(u−0.14271x3)
1+eu)|u=−(1.59577x+0.214064x3). However, e−u

may yield inf leading to NaN derivative, when x < 0. To
avoid this, the derivative can be calculated as
e−u

1+e−u (1− eu(u−0.14271x3)
1+e−u).

6. Experiments
To evaluate Alpha’s performance, certain comparisons with
PyTorch&cuDNN have been conducted on Cifar10 and
ILSVRC2012. PyTorch version is 1.12, CUDA version is
11.5, and the version of Alpha&cu32 is 1.1 or 1.2.

6.1. Methods and Conditions
Several kinds of optimizers (Rumehart et al., 1986;
Tieleman & Hinton, 2012; Kingma & Ba, 2015; Loshchilov
& Hutter, 2017; Liu et al., 2019) were utilized to train
DNNs (Szegedy et al., 2015; Simonyan & Zisserman, 2015;
He et al., 2016; Hu et al., 2018), with softmax and 0.001
learning-rate on Cifar10 and ILSVRC2012:

• Cifar10: the input shape is (32× 32), the label space is
10, the batchsize is 512, and the data was processed on
an RTX3060ti GPU with an i5-12490 CPU.

• ILSVRC2012: the input shape is (128× 128), the label
space is 1000, the batchsize is 256, and the data was
processed on an RTX4090 with an i9-13900KF CPU.
Alpha uses 16 threads to load and preprocess data,
while PyTorch utilizes 4 workers, which is the optimal
configuration we have observed.

DNNs of Alpha and PyTorch were identical, and underwent
the same initialization, training, and testing procedures. The
activation function is LeakyRelu (Maas et al., 2013).
Specific convolutional and full-connect layers were
adjusted to accommodate the tensor shape, while the
backbone of DNNs remains unaltered. BatchNorm (Ioffe &
Szegedy, 2015) was integrated into VGG and GoogLeNet,
to prevent gradient-vanishing and expedite convergence.
Full-connect and convolutional layers were initialized using
kaiming-uniform (He et al., 2015).
The labels were encoded to one-hot formats, and the pixel
values were linearly scaled to fall within [−1, 1]. The loss-
function value was recorded every 10 steps. To plot the loss
curves of ILSVRC2012, a sliding window of length 10 was
used to average the loss-function values without overlap.

6.2. Results and Discussions
Table 1-2 present the performance of Alpha and PyTorch.
The loss curves are shown in figure 12-35 in Appendix.

Table 1. Performance on Cifar10. PyTorch’s data is blue.
Alpha’s data is red. The speed and acceleration of Alpha-1.2 is dark red.

Network Training Speed Acceleration Train\Test accuracy GPU memory Reduction GPU utilization CPU utilization Weight file

GoogLeNet

Adam
30 epoch

9.147 8.674 s/epoch
13.022 s/epoch

1.423x 1.501x 97.82% 79.78%
97.07% 79.57%

2121 MB
4722 MB

0.4491x
90% 183 W
98% 183 W

18.0% 1067 MB
12.8% 3814 MB

32.6 MB
23.8 MBSGDM

40 epoch
9.125 8.665 s/epoch

12.963 s/epoch
1.421x 1.496x 92.86% 63.72%

90.87% 61.56%
2089 MB
4708 MB

0.4437x

ResNet18

Adam
25 epoch

5.822 5.332 s/epoch
7.312 s/epoch

1.256x 1.371x 99.09% 78.11%
98.90% 77.90%

1067 MB
2486 MB 0.4292x

92% 197 W
98% 162 W

13.6% 1138 MB
12.6% 3812 MB

66.7 MB
48.2 MBSGDM

35 epoch
5.794 5.284 s/epoch

7.158 s/epoch
1.235x 1.354x 100.0% 60.60%

99.83% 61.24%
1010 MB
2464 MB

0.4099.x

ResNet34

Adam
30 epoch

11.528 10.464 s/epoch
14.149 s/epoch

1.227x 1.352x 99.01% 79.45%
98.87% 79.16%

1685 MB
3122 MB

0.5397x
92% 198 W
98% 165 W

13.6% 1188 MB
12.6% 3813 MB

120 MB
87.3 MBSGDM

35 epoch
11.471 10.269 s/epoch

13.788 s/epoch
1.202x 1.343x 100.0% 60.60%

99.83% 61.24%
1572 MB
3116 MB

0.5045x

VGG16

Adam
35 epoch

9.709 8.565 s/epoch
11.041 s/epoch

1.137x 1.289x 97.91% 82.75%
97.59% 82.62%

1634 MB
3675 MB

0.4466x
97% 197 W
99% 180 W

12.9% 1007 MB
13.2% 3814 MB

78.7 MB
56.7 MBSGDM

35 epoch
9.698 8.493 s/epoch

10.871 s/epoch
1.121x 1.279x 100.0% 75.90%

100.0% 75.96%
1569 MB
3658 MB

0.4289x

VGG19

Adam
40 epoch

11.849 10.389 s/epoch
13.142 s/epoch

1.109x 1.265x 96.06% 81.13%
96.03% 80.98%

1786 MB
3755 MB

0.4756x
97% 197 W
99% 181 W

12.7% 1042 MB
13.2% 3817 MB

106 MB
77 MBSGDM

40 epoch
11.802 10.268 s/epoch

12.964 s/epoch
1.098x 1.262x 99.94% 76.84%

99.60% 76.56%
1694 MB
3740 MB

0.4529x

SENet

Adam
30 epoch

25.767 25.288 s/epoch
29.317 s/epoch

1.138x 1.159x 98.65% 81.88%
98.60% 81.46%

5424 MB
6947 MB 0.7808x

94% 197 W
99% 187 W

13.1% 1301 MB
12.3% 3816 MB

207 MB
150 MBSGDM

35 epoch
25.718 25.267 s/epoch

28.820 s/epoch
1.121x 1.141x 100.0% 63.74%

100.0% 63.82%
5261MB
6928MB

0.7594x

Table 2. Performance on ILSVRC2012. PyTorch’s data is blue.
Alpha’s data is red. The speed and acceleration of Alpha-1.2 is dark red.

Network Training Speed Acceleration Train set accuracy GPU memory Reduction GPU utilization CPU utilization Weight file

ResNet18

Adam
50 epoch

664.957 - 627.675 s/epoch
1202.894 s/epoch

1.809x 1.916x 99.09%
98.90%

5718 MB
11848 MB

0.4826x
92% 388 W
96% 368 W

61.9% 5360 MB
24.7% 7321 MB

66.8 MB
50.9 MBRMSprop

40 epoch
661.992 625.202 s/epoch

1185.132 s/epoch
1.790x 1.896x 97.28%

97.53%
5656 MB
11744 MB

0.4742x

ResNet34

Adam
50 epoch

1264.301 1132.489 s/epoch
2219.791 s/epoch

1.756x 1.960x 99.01%
98.87%

9090 MB
15384 MB

0.5909x
95% 405 W
99% 370 W

36.5% 5180 MB
23.8% 7252 MB

124 MB
89.8 MBSGDM

60 epoch
1233.389 1126.331 s/epoch

2205.236 s/epoch
1.788x 1.958x 97.99%

95.63%
8991 MB

15038 MB
0.5979x

ResNet50

AdamW
60 epoch

989.484 975.828 s/epoch
1472.867 s/epoch

1.489x 1.509x 88.50%
90.36%

9980 MB
12896 MB

0.7739x
91% 389 W
96% 371 W

45.1% 5406 MB
20.6% 7357 MB

264 MB
199 MBAdam

50 epoch
994.888 971.652 s/epoch

1458.453 s/epoch
1.466x 1.501x 96.85%

96.51%
9980 MB

12896 MB
0.7739x

VGG16

Adam
30 epoch

1087.803 941.921 s/epoch
1115.235 s/epoch

1.025x 1.184x 97.94%
97.65%

10870 MB
14240 MB

0.7633x
96% 402 W
97% 366 W

40.3% 5106 MB
23.3% 7294 MB

294 MB
224 MBSGDM

40 epoch
1086.935 932.007 s/epoch

1114.341 s/epoch
1.025x 1.196x 93.72%

94.61%
10653 MB
13564 MB

0.7854x

VGG19

Adam
40 epoch

1217.609 1033.081 s/epoch
1246.722 s/epoch

1.024x 1.207x 97.85%
97.42%

11138 MB
14438 MB

0.7714x
98% 405 W
97% 370 W

38.7% 5031 MB
23.1% 7460 MB

319 MB
244 MBSGDM

40 epoch
1209.913 1016.869 s/epoch

1229.833 s/epoch
1.016x 1.209x 97.30%

97.53%
10880 MB
13766 MB

0.7903x

SENet

RAdam
60 epoch

910.079 902.903 s/epoch
1346.629 s/epoch

1.480x 1.491x 96.78%
96.88%

10268 MB
12242 MB

0.8384x
90% 355 W
94% 357 W

46.7% 5627 MB
21.4% 7301 MB

208 MB
152 MBAdam

60 epoch
916.739 903.387s/epoch

1335.822 s/epoch
1.457x 1.479x 97.30%

96.25%
10268 MB
12242 MB

0.8384x

On both datasets, DNNs trained by Alpha or PyTorch show
comparable convergence, accuracy, and efficiency. In terms
of speed and memory-usage, Alpha outperforms PyTorch in
certain scenarios.
Several factors contribute to Alpha’s higher speed
compared to PyTorch. Cu32 provides efficient GPU
operators, while ensuring correctness and accuracy. The
C-K-S algorithm avoids redundant 0-calculations in
conv-layers, reducing time complexity and strain on
hardware. Specifically, KS-deconv and Sk-dilated
significantly simplify the backpropagation of conv-layers
with non-unit stride, thereby accelerating the execution of
ResNet and SENet. Im2col-Winograd reduces the cost of
stride-1 conv-layers, especially those with (3× 3) or (5× 5)

filters. The concurrent execution offered by async APIs
enhances the power of GPUs, and conceals the execution of
certain CPU functions. The fusion of operators reduces
memory access, lowering the computational cost.
Alpha’s lower memory-usage compared to PyTorch can be
attributed to several reasons. Alpha offers a wider range of
inplace and fused operators than PyTorch; and it tries to
calculate gradients directly within the memory space of
preceding gradients, thereby reducing the need for memory
space to store intermediate variables. In both forward and
backward propagation, Tensors that are no longer required
can be released based on Syncers, thus facilitating the

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

recycling of memory blocks. The experiments mentioned in
this paper were carried out using the basic memory pool,
and it is possible to further decrease memory usage by
configuring a more advanced memory-pool to EngineCore.
GPU-utilization is evaluated using 2 metrics: power and
time-slice utilization-rate (UT). Alpha and PyTorch employ
distinct methods to scheduling operators, each offering its
own advantages. In PyTorch, operators are launched by a
single thread, and typically executed in 1 CUDA stream
based on a first-in-first-out order. This approach leads to
higher UT due to less overhead of synchronization between
operators. Conversely, in Alpha, operators are managed via
multi-threads, and executed in multiple CUDA streams
concurrently, enabling higher power. However, this
approach requires heavier synchronization mechanisms,
leading to a lower UT.
CPU-utilization is evaluated by 2 metrics: memory-usage
and time-slice utilization-rate (UT). The memory-usage is
primarily used to indicate the absence of memory leaks, as it
can be influenced by the configuration of the Java or Python
virtual machine. When training DNNs on ILSVRC2012,
Alpha and PyTorch achieve nearly 100% GPU utilization,
suggesting that the speed bottleneck is GPU-computing
rather than the data loading and preprocessing on CPU.
Notably, Alpha’s 16 threads have higher parallelism than
PyTorch’s 4 workers, and therefore result in a higher UT.
Overall, these experimental results are evidence supporting
the correctness and efficiency of Alpha&cu32.

7. Conclusion
This paper introduces the background, characteristics,
architectures, and techniques of Alpha&cu32. Besides, it
demonstrates their correctness and effectiveness, by
benchmarking them against PyTorch&cuDNN on Cifar10
and ILSVRC2012.
Alpha tries to raise Java’s effectiveness in DL field. It
adopts some innovative designs to ensure user-friendliness,
and realizes high-performance through cu32 and specific
techniques. Based on its multi-layer architecture and the
adaptability to Java big-data ecosystem, Alpha achieves
scalability and is capable of aggregating heterogeneous
computing resources.
The source code for Alpha is available for access at {the link
is hidden due to double-blind review}. Subsequent updates
will be aligned with our future works.

Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here

References
Abadi, M., Agarwal, A., Barham, P., and et al. TensorFlow:

Large-scale machine Learning on heterogeneous system.
arXiv e-prints, 2016. URL https://arxiv.org/
abs/1603.04467v2.

Castro, R. L., Andrade, D., and Fraguela, B. B.
OpenCNN: A Winograd Minimal Filtering Algorithm
Implementation in CUDA. Mathematics, 9(17), 2021.

Chetlur, S., Woolley, C., Vandermersc, P., and et. al.
cuDNN: Efficient Primitives for Deep Learning. CoRR,
abs/1410.0759, 2014, 2014.

Chollet, F. Keras: Deep Learning for humans. URL https:
//keras.i.

Cutting, D., Cafarella, M., and et. al. Hadoop. URL https:
//hadoop.apache.org/.

Ding, J., Ren, X., Luo, R., and Sun, X. An Adaptive and
Momental Bound Method for Stochastic Learning. arXiv
e-prints, 2019. URL https://arxiv.org/abs/
1910.12249v1.

Feenster, A., Henkelmann, C., Bamberg, E., and et. al. Deep
Java Library. URL https://djl.ai/.

Gibson, A., Nicholson, C., Patterson, J., and et al.
Deeplearning4j: Distributed, open-source deep learning
for Java and Scala on Hadoop and Spark. 2016. doi:
10.6084/M9.FIGSHARE.3362644.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. URL http://www.
deeplearningbook.org.

He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on
ImageNet. In Proceedings of International Conference
on Machine Learning (ICML), pp. 448–456, 2015.

He, K., Zhang, X., Ren, S., and Sunn, J. Deep residual
learning for image recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.
90.

Hendrycks, D. and Gimpe, K. Gaussian Error Linear
Units (GELUs). arXiv e-prints, 2016. URL https:
//arxiv.org/abs/1606.08415v5.

Hu, J., Shen, L., and Sun, G. Squeeze-and-Excitation
Networks. In Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
7132–7141, 2018. doi: 10.1109/CVPR.2018.00745.

8

https://arxiv.org/abs/1603.04467v2
https://arxiv.org/abs/1603.04467v2
https://keras.i
https://keras.i
https://hadoop.apache.org/
https://hadoop.apache.org/
https://arxiv.org/abs/1910.12249v1
https://arxiv.org/abs/1910.12249v1
https://djl.ai/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1606.08415v5
https://arxiv.org/abs/1606.08415v5

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift. In Proceedings of International Conference on
Machine Learning (ICML), pp. 448–456, 2015.

Jia, Y., Shelhamer, E., Donahue, J., and et al. caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference
on Multimedia Retrieval (ICMR), pp. 675–678, Newark,
NJ, USA, 2014.

Kingma, D. P. and Ba, J. L. Adam: a Method for Stochastic
Optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San
Diego, USA, 2015.

Krizhevsky, A. Cifar10, a. URL http://www.cs.
toronto.edu/˜kriz/cifar.html.

Krizhevsky, A. cuda-convnet2, b. URL https://code.
google.com/p/cuda-convnet2.

Krizhevsky, A., Sutskever, I., and Hinto, G. E. Imagenet
classification with deep convolutional neural networks.
In Proceedings of the 26th Annual Conference on Neural
Information Processing Systems (NIPS), pp. 1097–1105,
2012.

Lavin, A. and S.Gray. Fast algorithms for convolutional
neural networks. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 2016. doi: 10.1109/CVPR.2016.435.

Li, F. IMAGENET. URL https://image-net.org.

Liu, L., Jiang, H., He, P., and et. al. On the Variance
of the Adaptive Learning Rate and Beyond. arXiv
e-prints, 2019. URL https://arxiv.org/abs/
1908.03265v1.

Loshchilov, H. and Hutter, F. Decoupled Weight decay
regularization. arXiv e-prints, 2017. URL https://
arxiv.org/abs/1711.05101v1.

Maas, A. L., Y, A., Hannun, and Ng, A. Y. Rectifier
Nonlinearities Improve Neural Network Acoustic Models.
In Proceedings of International Conference on Machine
Learning (ICML), 2013.

NVIDIA. cuBLAS. URL https://developer.
nvidia.cn/cublas.

NVIDIA. CUDA C Best Practices Guide. NVIDIA,
2023a. URL https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide.

NVIDIA. CUDA C Programming Guide. NVIDIA,
2023b. URL https://docs.nvidia.com/cuda/
cuda-c-programming-guide.

Paszke, A., Gross, S., F.Massa, and et.al. Spark: Cluster
Computing with Working Sets. USENIX Association,
2010.

Paszke, A., Gross, S., Massa, F., and et al. PyTorch:
An Imperative Style, High-Performance Deep Learning
Library. In Proceedings of the 33rd Annual Conference
on Neural Information Processing Systems (NIPS), pp.
675–678, Vancouver, Canada, 2019.

Rumehart, D. E., Hinton, G. E., and et al. Learning
Representations by Back-Propagating errors. Nature, 323
(6088):533–536, 1986. doi: 10.1038/323533a.

Simonyan, K. and Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In
Proceedings of the 3rd International Conference on
Learning Representations (ICLR), 2015.

Srivastava, N., Hinton, G. E., Krizhevsky, A., and et al.
Dropout: A Simple Way to Prevent Neural Network from
Overfitting. Journal of Machine Learning Research, 15
(1):1929–1958, 2014.

Szegedy, C., Liu, W., Jia, Y., and et al. Going deeper with
convolutions. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
1–9, 2015. doi: 10.1109/CVPR.2015.7298594.

Tieleman, T. and Hinton, G. RMSprop. Neural Networks
for Machine Learning, 2012.

Tokui, S., Oono, K., Hido, S., and Clayton, J. Chainer: a
next-generation open-source framework for deep learning.
In Proceedings of the 29th Annual Conference on
Neural Information Processing Systems (NIPS), Montréal
Canada, 2015.

Yan, D., Wang, W., and Chu, X. Optimizing Batched
Winograd Convolution on GPUs. In Proceedings of
the 25th ACM Symposium on Principles and Practice
of Parallel Programming (SIGPLAN), San Diego, CA,
USA, 2020.

Yang, J. L. D. and Lai, J. Optimizing Winograd-Based
Convolution with Tensor Cores. In Proceedings of the
50th International Conference on Parallel Processing,
2021.

9

http://www.cs.toronto. edu/~kriz/cifar.html
http://www.cs.toronto. edu/~kriz/cifar.html
https://code.google.com/p/ cuda-convnet2
https://code.google.com/p/ cuda-convnet2
https://image-net.org
https://arxiv.org/abs/1908.03265v1
https://arxiv.org/abs/1908.03265v1
https://arxiv.org/abs/1711.05101v1
https://arxiv.org/abs/1711.05101v1
https://developer.nvidia.cn/cublas
https://developer.nvidia.cn/cublas
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

Appendix

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000

Lo
ss

Step

Alpha
Pytorch

Figure 12. ILSVRC2012: ResNet18 + Adam, 50 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000

Lo
ss

Step

Alpha
PyTorch

Figure 13. ILSVRC2012: ResNet18 + RMSprop, 40 epoch

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000

Lo
ss

Step

Alpha
PyTorch

Figure 14. ILSVRC2012: ResNet34 + Adam, 50 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000 216000 240000 264000 288000

Lo
ss

Step

Alpha
PyTorch

Figure 15. ILSVRC2012: ResNet34 + SGDM, 60 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000 216000 240000 264000 288000

Lo
ss

Step

Alpha
PyTorch

Figure 16. ILSVRC2012: ResNet50 + AdamW, 60 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000 216000 240000

Lo
ss

Step

Alpha
PyTorch

Figure 17. ILSVRC2012: ResNet50 + Adam, 50 epoch

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000 120000 140000

Lo
ss

Step

Alpha
PyTorch

Figure 18. ILSVRC2012: VGG16 + Adam, 30 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000

Lo
ss

Step

Alpha
PyTorch

Figure 19. ILSVRC2012: VGG16 + SGDM, 30 epoch

0

2

4

6

8

10

0 24000 48000 72000 96000 120000 144000 168000 192000

Lo
ss

Step

Alpha
PyTorch

Figure 20. ILSVRC2012: VGG19 + Adam, 40 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000

Lo
ss

Step

Alpha
PyTorch

Figure 21. ILSVRC2012: VGG19 + SGDM, 40 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000 216000 240000 264000 288000

Lo
ss

Step

Alpha
PyTorch

Figure 22. ILSVRC2012: SENet + RAdam, 60 epoch

0

1

2

3

4

5

6

7

8

0 24000 48000 72000 96000 120000 144000 168000 192000 216000 240000 264000 288000

Lo
ss

Step

Alpha
PyTorch

Figure 23. ILSVRC2012: SENet + Adam, 60 epoch
10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Dragon-Alpha&cu32: Fully Open-source Java Deep-Learning Framework And High-Performance CUDA Library

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

Lo
ss

Step

Alpha
Pytorch

Figure 24. Cifar10: GoogLeNet + Adam, 30 epochs

0

0.5

1

1.5

2

2.5

0 400 800 1200 1600 2000 2400 2800 3200 3600

Lo
ss

Step

Alpha
Pytorch

Figure 25. Cifar10: GoogLeNet + SGDM, 40 epoch

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250

Lo
ss

Step

Alpha
Pytorch

Figure 26. Cifar10: ResNet18 + Adam, 25 epoch

0

0.5

1

1.5

2

2.5

0 320 640 960 1280 1600 1920 2240 2560 2880 3200

Lo
ss

Step

Alpha
Pytorch

Figure 27. Cifar10: ResNet18 + SGDM, 35 epoch

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

Lo
ss

Step

Alpha
Pytorch

Figure 28. Cifar10: ResNet34 + Adam, 30 epoch

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Lo
ss

Step

Alpha
Pytorch

Figure 29. Cifar10: ResNet34 + SGDM, 35 epoch

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Lo
ss

Step

Alpha
Pytorch

Figure 30. Cifar10: VGG16 + Adam, 35 epoch

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Lo
ss

Step

Alpha
Pytorch

Figure 31. Cifar10: VGG16 + SGDM, 35 epoch

0

0.5

1

1.5

2

2.5

0 340 680 1020 1360 1700 2040 2380 2720 3060 3400 3740

Lo
ss

Step

Alpha
Pytorch

Figure 32. Cifar10: VGG19 + Adam, 40 epoch

0

0.5

1

1.5

2

2.5

0 400 800 1200 1600 2000 2400 2800 3200 3600

Lo
ss

Step

Alpha
Pytorch

Figure 33. Cifar10: VGG19 + SGDM, 40 epoch

0

0.5

1

1.5

2

2.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

Lo
ss

Step

Alpha
PyTorch

Figure 34. Cifar10: SENet + Adam, 30 epoch

0

0.5

1

1.5

2

2.5

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

Lo
ss

Step

Alpha
PyTorch

Figure 35. Cifar10: SENet + SGDM, 35 epoch

11

