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A B S T R A C T
Hyperspectral Imaging (HSI) has emerged as a powerful approach for rapid and non-destructive seed
classification; however, current HSI models are often limited by data scarcity, alongside domain
specificity from insufficient varieties and single-crop specialization, ultimately hindering model
capacity and performance. To tackle this limitation, we exploit Common Feature Representations
(CFRs) across multiple crops, forming a large-scale dataset with 296208 samples across 79 classes.
This dataset promotes training deeper convolution-attention networks, that accurately process full
HSI data end-to-end. Models are pre-trained on multi-crop data to learn generic CFRs, and then
fine-tuned for target crops. We further optimize architectures and training pipelines for HSI, with
hardware acceleration support. Experiments show that, compared to single-crop training baselines,
CFRs enhance both accuracy and convergence. For maize, rice, sorghum, and wheat, the maximum
accuracy is improved by 1.9%, 4.0%, 0.7%, and 0.9%, respectively, achieving final accuracy of 96.3%,
92.6%, 92.6%, and 98.6%——substantially outperforming small machine-learning models. CFRs also
reduce performance variance and test-validation accuracy gap, confirming higher robustness. This
work validates the scaling law for HSI Deep Learning: multi-crop data integration via CFRs expands
knowledge domains, paving the way for larger and more powerful models.

1. Introduction1

Seed variety is a crucial determinant of nutrition, agricultural2

yield, and market value, directly affecting crop performance and3

food security. Therefore, efficient seed classification is important4

for various applications, like food production, crop breeding, and5

animal husbandry. While accurate seed classification has been6

achieved through laboratory-based methods, such as protein elec-7

trophoresis, and DNA molecular marker; these methods are de-8

structive, time-consuming, and labor-intensive, limiting their use9

for large-scale and online real-time analysis. To overcome these10

drawbacks, hyperspectral imaging (HSI) has become a promising11

tool for rapid and non-destructive seed classification.12

Unlike normal RGB images and near-infrared spectroscopy,13

hyperspectral images integrate both spatial and spectral features14

across numerous wavelengths. This high-dimensional data can be15

modeled to infer biochemical and chemical features of seeds. To16

model HSI data, previous studies have explored machine learn-17

ing (ML) methods, including K-Nearest Neighbors (KNN) [1–18

3], Random Forest (RF) [2, 4–6], and Support Vector Machines19

(SVM) [2, 7–11]. However, traditional ML methods depend on20

manually extracted features from selected spectral bands. This21

manual extraction process is labor-intensive, requires expert knowl-22

edge, and may lose fine-grained information. For more automated23

and accurate modeling, Deep Learning (DL) has been recently24

utilized, and demonstrated state-of-the-art performance on many25

important crops, such as rice [12, 35], wheat [13–16], maize26

[17–20], and sorghum [21]. In addition to Convolutional Neural27
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Networks (CNNs), some studies [12, 17, 20] incorporate attention 28

mechanisms to further improve performance. 29

However, there still remain challenges in HSI seed modeling: 30

(1) Data Scarcity. Unlike the millions of samples in large RGB 31

datasets [22, 23], typical HSI datasets range from hundreds [2– 32

5, 7–9, 11, 21, 24, 25] to thousands [10, 12–15, 17, 18, 35], with 33

the largest open-source HSI seed dataset, RSHI60K [1], contain- 34

ing 60000 samples. This limited data size increases overfitting 35

risks, especially for large models that demand extensive training 36

data. Consequently, many studies have opted for smaller models, 37

such as ML models or limited-depth DNNs [13–21], potentially 38

sacrificing achievable performance. In contrast, many computer 39

vision (CV) models [26–33] boast hundreds of layers and over 20 40

million parameters, allowing them to learn more intricate patterns 41

and achieve state-of-the-art performance. Furthermore, as smaller 42

datasets tend to have greater distributional bias and lower diversity, 43

accuracy metrics may be inflated and imprecisely reflect real-world 44

performance. 45

(2) Domain Specificity. Current models are frequently trained 46

on single-crop data, with involved variety count typically less than 47

21 [12, 16–18], and even fewer than 11 [1–4, 7, 9, 10, 13–15, 48

21, 25, 34, 35]. This narrow focus restricts the knowledge domain 49

and model generalization. In contrast, large RGB datasets [22, 23] 50

contain over 1000 classes, encompassing a much broader range 51

of visual patterns that enable robust learning. Within a narrow 52

domain, HSI data can be both expensive to collect and limited 53

in size, exacerbating the challenge of data scarcity. To leverage 54

knowledge from related datasets. a few studies [34–36] have ex- 55

plored HSI transfer learning. However, these transfer approaches 56

are constrained to the single-crop scope, and are insufficient to drive 57

models comparable to those in CV. 58

To tackle these challenges, this work investigates Common Fea- 59

ture Representations (CFRs) to bridge multi-crop data, significantly 60

expanding data volume and knowledge domain beyond single-crop 61

constraints. By leveraging CFRs, related crops can share their data, 62
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Figure 1: HSI seed datasets. The maize, rice, sorghum, and wheat datasets are combined to construct the multi-crop dataset.

Figure 2: HSI dataset construction. (a) acquisition: A computer-controlled system captures raw HSI 𝐼𝑜, black reference 𝐼𝑏, and
white reference 𝐼𝑤, which are then processed to generate corrected HSI 𝐼𝑐 . (b) preprocessing: 𝐼𝑜 and 𝐼𝑐 are segmented and
standardized to generate HSI samples, which are compressed and organized into datasets. The acquisition and preprocessing are
similar for rice, wheat, and sorghum. Hyperspectral images are visualized by extracting the 13-th, 80-th, and 132-rd channels to
generate RGB images.

and existing data can be used for modeling unseen crops, promot-63

ing efficient resource utilization. We propose a transfer-learning64

framework that exploits CFRs for HSI-based seed classification,65

comprising three key components:66

∙ Multi-Crop Dataset: Four datasets, consisting of 47 maize, 1967

rice, 7 sorghum, and 6 wheat classes, are combined into a68

multi-crop dataset containing 296208 samples. This results69

in 2.6× to 6.1× data-size increase over single-crop datasets,70

facilitating the training of high-capacity models.71

∙ Larger HSI Models: Deep convolution-attention models, with72

over 30 million parameters, are designed to process full73

hyperspectral images end-to-end. Inspired by advanced CV74

models, the architectures are tailored for stale and effective75

HSI processing, including downsampling adjustment, and76

replacing BatchNorm with LayerNorm + LayerScale.77

∙ CFR-Driven Training: Models are pre-trained on the multi-78

crop dataset to learn transferable CFRs, and then fine-tuned79

on target-crop data to specialize the learned knowledge. To80

further enhance performance, we leverage hardware accelera-81

tion, and modern training techniques, including sophisticated82

optimizers and HSI data augmentation.83

Finally, this work analyzes how learning CFRs leads to higher84

accuracy and more robust convergence.85

2. Dataset Construction86

As detailed in Figure 1, this work develops four HSI seed87

datasets: a maize dataset contains 114252 samples across 4788

classes, a rice dataset contains 59668 samples across 19 classes, 89

a sorghum dataset contains 73800 samples across 7 classes, and 90

a wheat dataset contains 48488 samples across 6 classes. These 91

individual datasets are each larger than those used in many previous 92

studies. Furthermore, to create a more comprehensive resource, all 93

four datasets are combined into a multi-crop dataset, containing 94

296208 samples across 79 classes. Each unique seed variety is 95

treated as an independent class, with the exception of several maize 96

varieties (Leying635, Jingboshi740, H1820, and Jingzidan1) from 97

different origins, which are considered as distinct classes. 98

The process of dataset construction, consisting of HSI acquisi- 99

tion and data preprocessing, is illustrated in Figure 2. 100

2.1. HSI Acquisition 101

As shown in Figure 2 (a), the hyperspectral images are ac- 102

quired by a line-scan hyperspectral imaging system, consisting of 103

a Specim FX17e camera, a 150W incandescent light source, a dif- 104

fuse whiteboard, and a motorized linear translation platform. This 105

system is connected to a computer, which controls HSI acquisition 106

and processes signals to generate hyperspectral images. 107

The acquisition is carried out in a dark box, to avoid ambient 108

light and ensure consistent illumination. Before acquisition, the 109

light source and camera are activated for 30 minutes, to allow 110

for temporal and thermal stabilization. Seeds and whiteboard are 111

placed on the platform, at a 26 cm vertical distance to the camera 112

lens. During scanning, the platform moves at a constant speed of 3 113

cm/s, while the camera acquires data with a frame rate of 80 and 114

an exposure time of 4.9 ms. 115

The dark reference 𝐼𝑏 is acquired by closing the camera shutter, 116

and the white reference 𝐼𝑤 is acquired by scanning the whiteboard. 117
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The camera scans seeds to acquire the raw HSI 𝐼𝑜, which is118

subsequently normalized to calculate the corrected HSI 𝐼𝑐 = 𝐼𝑜−𝐼𝑏
𝐼𝑤−𝐼𝑏

.119

Each raw or corrected HSI has a spatial resolution of 720 × 640120

pixels, and contains 224 spectral bands ranging from 935.6 to121

1720.2 nm wavelength.122

2.2. Data Preprocessing123

As shown in Figure 2 (b), each raw or corrected HSI is seg-124

mented based on spatial coordinates, with each segment containing125

only one seed. The segments are spatially resized or padded to a126

resolution of 32×32 pixels, where the pixel values are linearly nor-127

malized into the range [0, 255] and converted into uint8 datatype.128

Each processed segment is designated as an HSI sample.129

HSI samples are formatted in HWC, where 𝐻 , 𝑊 , and 𝐶130

denote the height, width, and channel dimensions, respectively.131

Each channel corresponds to a specific spectral band, with the132

pixels within each channel forming a 2D image ∈ ℝ𝐻×𝑊 . HSI133

samples are compressed to approximately 25% of their original size134

using the deflate algorithm, significantly reducing memory usage135

and bandwidth demands.136

The HSI samples for each crop are construct the corresponding137

single-crop dataset. Each dataset is split into training, validation,138

and test sets with an 8:1:1 ratio. To prevent data leakage, HSI sam-139

ples originating from the same seed are arranged in the same set.140

The training set includes both raw and corrected HSI samples for141

data augmentation. To ensure unbiased evaluation, the validation142

and test sets retain only the corrected HSI samples. Finally, all143

individual training, validation, and test sets are combined to create144

the corresponding sets of the multi-crop dataset.145

3. Architecture Design146

Leveraging the substantial scale of our multi-crop dataset, we147

employ convolution-attention DNNs to establish end-to-end map-148

pings from hyperspectral images to seed classes. Our models com-149

prise 52 to 119 convolution and fully-connected layers, represent-150

ing in a notable increase in depth and capacity than many previous151

models [12–15, 17, 17–20, 20, 21]. Inspired by advanced CV152

models [26, 27, 32, 38, 39], the architectures are further optimized153

for hyperspectral images. while classical spectral-preprocessing154

(e.g. SNV, MSC) and feature-extraction (e.g. UVE, SPA, PCA)155

techniques address the high correlation and redundancy in hyper-156

spectral images, they inevitably lose fine-grained features that are157

crucial for accurate classification. In contrast, our high-capacity158

DNNs are able to process full spectral and spatial information,159

enabling a more comprehensively understanding [37].160

To facilitate both CFR learning and crop-specific optimization,161

each model comprises three components: stem, backbone, and162

classifier, with the backbone accounting for over 95% of the total163

parameters. The stem extracts low-level features from hyperspectral164

images; then the backbone processes these low-level features to165

generate high-level representations; finally, the classifier encodes166

the high-level representations into class probabilities, and predicts167

the class with the highest probability. The stem and backbone168

can be pre-trained on the multi-crop dataset to learn generalizable169

CFRs, and all three components can be fine-tuned on single-crop170

datasets for better adaptation.171

3.1. Stem and Classifier172

All models share the same stem and classifier architectures, as173

illustrated in Figure 3.174

The stem extracts low-level features, by downsampling 224 input 175

channels to 128. This 128-channel configuration was experimen- 176

tally determined, to achieve the best trade-off between accuracy and 177

memory usage. Given the relatively low spatial resolution (32×32), 178

the stem utilizes a 3×3 stride-1 convolution to better preserve fine- 179

grained spatial details, rather than the 7 × 7 stride-2 convolution 180

commonly used for ImageNet dataset. 181

The classifier first reduces feature spatial dimensions into 1 × 1, 182

by adaptive average pooling. The resulting vector is then processed 183

by two fully-connected layers. Finally, a Softmax layer encodes 184

the features into class probabilities. To mitigate overfitting, two 185

Dropout [40] layers with 0.4 dropout-rate are incorporated.

Figure 3: Stem and Classifier Architectures. 𝐻 , 𝑊 , and 𝐼𝐶
denote the input height, width, and channel size, respectively.
𝑁𝑐𝑙𝑎𝑠𝑠 is the number of classes.

186

3.2. Normalization Layer 187

Normalization layers are crucial for DNNs, providing faster 188

convergence, greater stability, and enhanced generalization. 189

Batch Normalization (BatchNorm) [41] has proven effective in 190

computer version, particularly on RGB datasets. However, when 191

applied to HSI datasets, it can lead to the inconsistency between 192

training loss and inference accuracy, severely degrading model 193

performance on unseen data. As exemplified in Figure 4 (a), when 194

training ResNet48 (with BatchNorm) on our maize dataset using 195

512 batch size, 5e-4 learning rate, and Adam optimizer [43], 196

the inference accuracy violently fluctuates, inconsistent with the 197

near-zero training loss. This suggests that the model encounters 198

convergence problems, rendering the training loss an unreliable 199

indicator of progress. Similar problems [42] have been observed, 200

when training Transformers with BatchNorm for Natural Language 201

Processing (NLP) tasks.

(a)
0

0.25
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0.75

1

0 50 100 150 200 250 300

Epoch
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 Valid-Accu

ResNet48 with Batch Normalization

(b)
0

0.25

0.5

0.75

1

0 50 100 150 200 250 300
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 Valid-Accu

LnResNet48 with Layer Normalization

Figure 4: BatchNorm and LayerNorm training on HSI datasets.
’Train-Accu’, ’Test-Accu’, and ’Valid-Accu’ represent the infer-
ence accuracy on train, test, and validation sets, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Backbone Block Architectures. 𝐻 , 𝑊 , and 𝐼𝐶 denote the input height, width, and channel size, respectively. The
main path and shortcut connection of the residual structure are in blue and red, respectively. Downsampling is performed on the
shortcut connection using Conv2D layers, when the input and output dimensions differ.

202

This inconsistency arises because hyperspectral images interfere203

with BatchNorm’s statistical estimation. During training, Batch-204

Norm computes batch statistics (mean and variance) to update the205

running statistics for inference. Compared to RGB images, the huge206

channel sizes of hyperspectral images introduce much greater inter-207

sample variability, resulting in substantial differences in the statis-208

tics of different batches. Consequently, the accumulated running209

statistics fluctuate sharply, and can diverge from the testing-data210

statistics, causing the observed inconsistency.211

To address this issue, we replace BatchNorm with Layer Nor-212

malization (LayerNorm), which is widely used in NLP and gains213

traction in CV models [28, 30, 31]. LayerNorm operates consis-214

tently in both training and inference, thus avoiding the statistical215

divergence in BatchNorm. Additionally, LayerNorm normalizes216

across the channel dimension, preserving the integrity of spectral217

features; whereas BatchNorm normalizes across spatial dimen-218

sions, potentially distorting spectral features. As shown in Figure219

4 (b), we replace BatchNorm in ResNet48 with LayerNorm to220

construct LnResNet48-A, whose inference accuracy converges and221

aligns with the training loss.222

3.3. Backbone Blocks 223

The backbone comprises many building blocks, designed with 224

following principles to enhance performance: 225

(1) Residual Learning with LayerScale: Each block has a 226

shortcut connection to facilitate convergence and prevent degra- 227

dation. LayerScale [44] is integrated at the main path’s output, to 228

regularize feature magnitudes and suppress overfitting. 229

(2) Minimal Normalization and Activation Inspired by Con- 230

vNeXt [28] and Transformers [30, 31, 45], we simplify the main 231

path to a single LayerNorm and activation functions, reducing in- 232

formation loss. Beyond LeakyRelu, we adopt Gelu [46] and Swish 233

[47] for their smoother nonlinearity and input-adaptive gradients. 234

(3) Attention-Augmented Representation. To complement 235

convolutions’ local focus, we integrate multi-scale attention mecha- 236

nisms. Squeeze-Excitation (SE) for channel-wise modeling, Large- 237

Kernel-Attention (LKA) [39, 48–50] to capture long-range spatial 238

interactions, and Multi-Head-Attention (MHA) [30, 31, 45] for 239

global context modeling. 240

Figure 5 presents the block architectures: 241

(a) SE-Block and LnLKA-Block. The squeeze factor of SE- 242

Block is reduced from 16 to 4 to enhance channel-wise attention. 243
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Figure 6: Complete Model Architectures. The backbone comprises four stages, respectively stacked by 3, 3, 9, and 3 fundamental
blocks. ’𝑑𝑖𝑣 = 2’ represents halving the spatial height and width. 𝐼𝐶 → 𝑂𝐶 denotes modifying channel size from 𝐼𝐶 to 𝑂𝐶 .

LnLKA-block builds upon LKA by replacing BatchNorm with244

LayerNorm, and adding residual connection and Dropout.245

(b) LnBasicBlocks. Variants of BasicBlock in ResNet [26].246

LnBasicBlock-A replaces 2 BatchNorm layers with 1 LayerNorm247

layer, and reduces 3 LeakyRelu functions to 2. LnBasicBlock-B248

further integrates LayerScale, and replaces the last LeakyRelu with249

Gelu. LnBasicBlock-C replaces all activation functions with Swish.250

(c) LnIvtBottleNecks. Variants of SEBottleNeck in SENet251

[32]. On the basis of SEBottleNeck, LnIvtBottleNeck-A replaces252

3 BatchNorm layers with 1 LayerNorm layer, and reduces 4253

activation functions to 3. Following the design of MobileNet254

[38, 51], the input-channel sizes of the main-path convolutions255

are inverted from (𝐼𝐶 → 𝐼𝐶∕4 → 𝐼𝐶 ) to (𝐼𝐶 → 4𝐼𝐶 → 𝐼𝐶 ).256

LnIvtBottleNeck-B further adds LayerScale, and LnIvtBottleNeck-257

C replaces all activation functions with Swish.258

(d) LnMBConv. A variant of MBConv in EfficientNet [27].259

It replaces 3 BatchNorm layers with 1 LayerNorm layer, and260

introduces a LayerScale when the input and output shapes are the261

same to enable shortcut connections.262

(e) ConvNeXt-Block and Patchfy-Downsampling.263

(f) TransformerEncoder. The basic architecture of Transform-264

ers [30, 31, 45]. It includes a MHA-block and a MLP-Block.265

To prevent numerical overflow and stabilize training, We add 2266

LayerNorm layers in MHA-block. We also add 2 LayerScale layers,267

one after the MHA-block and one after the MLP-block.268

3.4. Vertical Layout Design269

Figure 6 illustrates the vertical layout of complete models, with270

the stem and classifier positioned at the beginning and end. Inspired271

by ConvNeXt [28] and SwinTransformer [31], the backbone com-272

prises four Stages with a fundamental-block depth of (3, 3, 9, 3). In273

each Stage, the first block alters spatial and channel dimensions,274

while the subsequent blocks maintain identical input and output di-275

mensions. Specifically, Stage 1 reduces channel size, but preserves276

spatial height and width to retain fine-grained features; whereas277

Stage 2-4 halve spatial height and width, but double the channel278

size. To balance generalization and capacity [33], TransformerEn-279

coders and LnLKA-Blocks are integrated into Stage 2-4.280

LnBasicBlocks, LnIvtBottleNecks, LnMBConv, and ConvNeXt-281

Block construct the backbones of LnResNet48, LnIvtSENet63,282

LnEfficientNet, and ConvNeXt, respectively. ConvNeXt-C64 and283

-C96 are two ConvNext configurations, with channel sizes in284

multiples of 64 and 96. For the first block in Stage 1 of LnIvt- 285

SENet63 and LnEfficientNet, the input-channel sizes of main-path 286

convolutions are adjusted to (128 → 64 → 64), which reduces 287

memory usage and enables 512 batch size. Based on LnResNet48 288

and LnIvtSENet63, LnResViT and LnIvtSEViT replace certain 289

blocks in Stage 3 and 4 with 9 and 3 TransformerEncoders, to build 290

a simplified Vision Transformer (ViT). 291

4. Training Framework 292

The training pipeline comprises two phases: 293

(1) Multi-crop Pre-training: The model learns transferable 294

CFRs from the multi-crop dataset with a wider knowledge domain, 295

capturing cross-crop underlying patterns to enhance generalization. 296

(2) Single-crop Fine-tuning: The pre-trained stem and back- 297

bone are transferred to a single-crop dataset, and recombined with 298

a new classifier for fine-tuning. The freezing-unfreezing strategy 299

preserves CFRs while adapting models to crop-specific nuances. 300

To improve training efficiency, we use sophisticated optimizers, 301

address data imbalance, augment HSI data, carefully design hyper- 302

parameters, and accelerate model execution on GPUs. 303

4.1. Configurations 304

The models were trained on two RTX4090 GPUs, each with 24 305

GB global memory. The training setups are as follows: 306

Data Preparation. Pre-training utilizes both raw and corrected 307

HSI samples for data augmentation. Fine-tuning only uses cor- 308

rected samples to better approximate the target domain. HSI sam- 309

ples are augmented and then linearly scaled into interval [−1, 1]. 310

Labels are in one-hot formats with 0.1 label-smoothing [52]. 311

Class Balancing. Within a single-crop dataset or across multiple 312

datasets, seed classes exhibit imbalanced sample counts: We solve 313

this problem via: (1) Resampling equalizes per-class occurrence 314

frequency. Pre-training selects randomly 4096 samples per class; 315

Fine-tuning oversamples all classes to match the sample count of 316

the largest class. This resampling is repeated every 5 epochs, with 317

minimized data duplication. (2) Model performance is evaluated 318

via Class Average Accuracy, which averages Top-1 accuracy across 319

all classes. This metric is more representative than aggregate accu- 320

racy, in the presence of data imbalance. 321

Optimization Setup. Models are optimized using AdamW [53] 322

(𝛽1 = 0.9, 𝛽2 = 0.999, weight decay = 0.01), with AMSGrad 323

[54] to improve convergence. Except during warmup epochs, the 324
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Figure 7: HSI Data augmentation. Four distributions represent augmented samples from maize, rice, sorghum, and wheat, using
random spatial and color adjustment. Mixup generates a combined distribution for further augmentation. Hyperspectral images
are visualized by extracting the 13-th, 80-th, and 132-rd channels to generate RGB images.

learning rate is scheduled using Cosine Annealing [55], with a325

minimum learning rate of 10−4 and a maximum iteration number326

of 20 epochs. For regularization, Stochastic Depth [56] is applied327

to blocks with identical input and output dimensions, linearly328

increasing the drop probability from 0 to 0.5.329

Training Schedule. Models are saved at the epoch that achieves330

the best validation accuracy. Pre-training involves 570 epochs with331

a 5-epoch warmup, as detailed in Table 1. Fine-tuning setups are332

similar to those of Pre-training, To fully exploit model potential,333

fine-tuning aims for approximately 100% training accuracy in the334

final epochs. The backbone or stem is frozen during the first 50335

epochs. This freezing strategy prevents model degradation, and336

typically results in higher validation accuracy than that in pre-337

training. For transformer-based models and sorghum datasets, we338

freeze both backbone and stem; for other cases, freezing backbone339

alone is sufficient to maintain adaptability and preserve CFRs.

Table 1
Pre-training Setups. The batch size is 1024 for LnResNet48,
and 512 for the other models.

epoch count initial learning rate batch size Mixup λ

50 1e-4 1024 / 512 1.00
5-epoch warmup: learning rate 1e-4 to 5e-4

160 5e-4 1024 / 512 0.80
160 4e-4 1024 / 512 0.90
100 3e-4 1024 / 512 0.95
50 2e-4 1024 / 512 1.00
50 1e-4 1024 / 512 1.00

340

4.2. HSI Data Augmentation341

To enhance model robustness, we extend RGB augmentation342

techniques to hyperspectral images, as illustrated in Figure 7.343

Spatial Transformation. The magnitudes of random shearing,344

translation, scaling, and rotation are 0.1, 0.1, 0.05, and 0.05𝜋,345

respectively. The probability of horizontal and vertical flips is 0.5.346

Color Jitter. For an HSI sample X ∈ ℝ𝐻×𝑊 ×𝐶 , its brightness,347

contrast, and saturation are randomly adjusted as follows:348

X ← X + 255𝑘𝑏349

X ← X + 𝑘𝑠(X − Xgray)350

X ← (1 + 𝑘𝑐)X − (1 −
√

1 + 𝑘𝑐)Xmean351

Here, 𝑘𝑏, 𝑘𝑠, and 𝑘𝑐 follow a uniform distribution in region [0, 0.3], 352

and they determine the degree of brightness, saturation, and con- 353

trast adjustment, respectively. Xmean ∈ ℝ𝐶 is the channel-wise 354

mean of X, and Xgray ∈ ℝ𝐻×𝑊 is the grayscale image produced 355

by averaging X across spectral channels. 356

Mixup. We employ Mixup [57] to train models beyond empiri- 357

cal risk minimization. Mixup is applied to each batch of data, by 358

linearly interpolating the shuffled batch with the original batch. 359

While mixup can effectively improve generalization, it can impede 360

model convergence. To achieve perfect convergence, Mixup is 361

only applied during pre-training, with interpolation coefficient 𝜆 362

gradually increased from 0.8 to 1.0. 363

4.3. Hardware Acceleration 364

The Im2col-Winograd [58] and C-K-S [59] algorithms are em- 365

ployed to accelerate convolution layers. We optimize the depthwise 366

convolutions to speedup LnLKA-Block. LayerScale, Dropout, and 367

LayerNorm are fused with activation functions, reducing memory 368

usage and bandwidth requirement by up to 33%. 369

Due to the much larger size of hyperspectral images over RGB 370

images, loading HSI data from hard discs can be a significant 371

bottleneck for training throughput. To fasten HSI loading, we utilize 372

multiple threads to load and unpack batches of compressed HSI 373

samples. Prior to loading, compressing HSI data reduces bandwidth 374

requirement by about 75%. Besides, the loading and unpacking 375

are executed in parallel, effectively hiding each other’s latency. 376

Consequently, the loading speed increases by nearly 4×, allowing 377

GPUs to each over 90% of their peak power. 378

Although training the model requires tens of GPU hours, the 379

resulting model enables efficient inference. On a single RTX 4090 380

GPU, the largest LnIvtSEViT model achieves can process about 381

2438 samples per second in FP32 precision, The throughput can 382

be doubled using FP16 precision. This efficiency makes the model 383

practical for real-time large-scale classification tasks. 384

5. Results and Analysis 385

To evaluate the effectiveness of CFR learning, we compare 386

CFR-driven models, against baseline models trained on single- 387

crop data. To isolate the impact of CFRs, both model types use 388

identical training protocols, with two key differences: 389

(1) Pre-training data: A CFR-driven model is pre-trained on the 390

multi-crop dataset to learn CFRs; a baseline model is pre-trained on 391

a single-crop dataset. 392
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Table 2
Model Accuracy. ’base’ and ’CFR’ denote baseline and CFR-driven models, respectively; ’test’ and ’valid’ represent the class
average accuracy (%) on test and validation sets.

Maize
test valid

base CFR base CFR
91.0 92.2 94.0 94.8
93.2 95.1 94.9 96.1
93.6 94.8 95.1 96.2
91.0 92.6 93.4 94.0
92.7 94.3 94.7 96.1
92.7 94.2 95.1 95.9
91.4 92.5 93.6 94.0
90.3 92.2 92.6 94.0
93.2 93.9 95.0 95.4
94.3 95.7 96.2 97.0
94.4 95.4 96.2 97.1
94.1 96.3 96.4 97.3
94.4 95.9 96.0 97.2
92.8 94.2 94.9 95.8
94.4 96.3 96.4 97.3
90.3 92.2 92.6 94.0

Model

LnResNet48-A
LnResNet48-B
LnResNet48-C
LnIvtSENet63-A
LnIvtSENet63-B
LnIvtSENet63-C
ConvNeXt-C64
ConvNeXt-C96
LnEfficientNet
LnResViT-B
LnResViT-C
LnIvtSEViT-B
LnIvtSEViT-C

average
maximum
minimum

Rice

85.1 91.1 87.0 91.3
88.1 92.6 88.4 92.5
87.7 92.0 88.7 92.3
84.8 90.8 85.2 91.5
89.4 91.0 90.3 91.5
88.9 91.0 90.3 91.1
87.5 89.0 88.4 89.7
87.3 89.5 88.2 90.9
84.2 89.1 85.0 90.5
85.9 91.6 87.0 90.7
87.1 91.2 88.1 92.1
88.1 91.3 88.9 91.9
86.2

base CFR base CFR
test valid

91.3 88.6 91.9
86.9 90.9 88.0 91.4
89.4 92.6 90.3 92.5
84.2 89.0 85.0 89.7

Sorghum
test valid

base CFR base CFR
90.6 91.1 89.4 90.2
91.0 91.5 90.2 91.0
91.2 91.8 90.4 91.3
89.3 89.9 89.0 90.2
91.3 91.4 90.7 91.2
91.8 92.3 90.5 91.2
90.3 90.3 90.3 89.2
90.5 91.5 89.7 89.9
89.5 90.4 88.7 90.0
91.5 91.7 91.0 90.7
91.9 92.6 91.4 91.2
91.8 91.9 91.0 91.6
91.3 92.1 90.7 91.9
90.9 91.4 90.3 90.7
91.9 92.6 91.4 91.9
89.3 89.9 88.7 89.2

Wheat
test valid

base CFR base CFR
97.2 97.8 96.5 97.8
97.3 98.5 97.0 98.0

97.2 98.0 96.9 98.0
96.5 97.5 96.9 97.7
97.7 97.9 97.7 97.9
97.2 98.2 97.7 98.2
96.9 98.0 97.1 97.5
97.1 98.0 97.0 97.6
96.5 98.1 96.9 97.9
97.1 98.4 97.5 98.0
97.5 98.6 97.2 97.8
97.7 98.1 97.6 97.8
97.3 98.4 97.5 97.9
97.2 98.1 97.2 97.9
97.7 98.6 97.7 98.2
96.5 97.5 96.9 97.5

(2) Classifier handling: In fine-tuning, CFR-driven models use393

a new classifier; baseline models retain the pre-trained classifier.394

We also compare our DNNs with traditional ML models, to395

demonstrate their high performance.396

5.1. Accuracy Improvement397

As shown in Table 2, CFR-driven models consistently out-398

perform baseline models, demonstrating that CFR learning can399

enhance universal feature extraction in an architecture-agnostic400

manner. For maize, rice, sorghum, and wheat, CFR-driven models401

achieve the highest accuracy at 96.3%, 92.6%, 92.6%, and 98.6%,402

respectively. This phenomenon parallels NLP researches [60, 61],403

where cross-lingual pre-training similarly enhances downstream404

performance.

Table 3
Accuracy Improvement across all model architectures. ’Max-
Accu Impr’, ’Min-Accu Impr’, and ’Avg-Accu Impr’ denote
the maximum, minimum, and average accuracy improvement
of CFR-driven models over baseline models; ’test’ and ’valid’
represent the test set and validation set, respectively.

Crop
Max-Accu Impr Min-Accu Impr Avg-Accu Impr
test valid test valid test valid

Maize 1.9 0.9 1.9 1.4 1.4 0.9
Rice 3.2 2.2 4.8 4.7 4.0 3.4

Sorghum 0.7 0.5 0.6 0.5 0.5 0.4
Wheat 0.9 0.5 1.0 0.6 0.9 0.7
average 1.7 1.0 2.1 1.8 1.7 1.4

405

This systematic improvement, summarized in Table 3, reveals406

two advantages of CFR-driven models:407

(1) Superior Generalization. CFR-driven models achieve higher408

improvement on test set (1.7%) than validation set (1.4%). This in-409

dicates that they have a smaller bias across different data partitions,410

potentially more generalizable to unseen data.411

(2) Enhanced Stability. CFR-driven models have more con-412

sistent performance. First, their minimum accuracy improvement413

(2.1%) exceeds the maximum improvement (1.7%), indicating re- 414

liable performance floors. Second, their accuracy has a lower 415

standard deviation for most crops (rice: 1.08% vs. 1.6%; sorghum: 416

0.81% vs. 0.84%; wheat: 0.31% vs. 0.38%), with only a negligible 417

exception for maize (1.46% vs. 1.44%). 418

This cross-domain effectiveness of CFRs leads us to examine 419

the crop-specific behavior. While CFR-driven models show strong 420

accuracy improvements for maize and rice, their improvements for 421

wheat and sorghum are relatively modest due to following reasons. 422

(3) Wheat: baseline ceiling effects. The already-high base- 423

line (96.5% to 97.7%) leaves limited optimization space. Besides, 424

the trace contaminants in samples and spectral saturation effects 425

physically constraints accuracy improvement. Nevertheless, CFRs 426

reduce misclassification rate by 0.9% on average, a notable 32.1% 427

relative reduction, 428

(4) Sorghum: feature scarcity. As the smallest seeds, sorghum 429

contains fewer discriminative features, which physically limits the 430

transfer potential of CFRs. Further enhancements could incorpo- 431

rate more similar crops (e.g. millet, Quinoa) to enlarge common 432

feature intersections. 433

5.2. Convergence Improvement 434

CFR-driven models exhibit faster convergence over baseline 435

models, as presented in Figure 8, where baseline accuracy is 436

calculated by averaging per-class accuracy across all four crops. 437

This faster convergence is attributed to the wider knowledge do- 438

main of multi-crop dataset, which improves gradient quality. Even 439

though multi-crop data presents more intricate decision boundaries, 440

high-capacity DNNs effectively navigate this complexity. Unlike 441

similar and harder-to-distinguish single-crop data, cross-crop dif- 442

ferences provide clearer signals for discrimination, especially in the 443

early training stages. With a greater number of classes, multi-crop 444

data promotes more competitive probabilities, sharpening gradients 445

of Cross Entropy loss; besides, each batch tends to contain more 446

devise data, reducing the potential for biased updating that favors 447

specific classes. Additionally, the larger volume of multi-crop 448

dataset enables CFR-driven models to explore a wider range of 449

parameter space within an epoch. 450
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Figure 8: Pre-training convergence behavior. ’Train-Accu’, ’Test-Accu’, and ’Valid-Accu’ denote the accuracy (%) on training,
test, and validation sets. Markers with * indicate CFR-driven models; unmarked indicate baseline models.

For larger model architectures like LnIvtSEViT, we even need451

to triple the epoch count to train baseline models on simpler wheat452

or sorghum datasets, to achieve nearly 100% training accuracy.453

Despite using fewer iterations than baseline models, CFR-driven454

models not only achieve nearly 100% training accuracy, but also455

provides higher accuracy on test set. This demonstrates CFR learn-456

ing as an efficient method to accelerate cross-crop modeling.457

Moreover, multi-crop pre-training enhances training robustness.458

Specifically, certain baseline models (without LayerScale) may459

suffer from one-class dominance (100% accuracy for one class, 0%460

for the others), when pre-trained on simpler wheat and sorghum461

datasets. However, this problem never occurs with CFR-driven462

models, suggesting that increased data complexity prevents models463

from converging to bad local minima.464

5.3. Fine-Tuning Impact465

After fine-tuning, CFR-driven models show higher accuracy466

on both test and validation sets, with slightly higher validation467

improvements as summarized in Table 4. This confirms enhanced468

crop-specific performance.469

Sorghum shows more notable improvements (0.8%), compared470

to maize (0.2%), rice (0.1%), and wheat (0.1%), This suggests a471

greater degree of shared features among maize, rice, and wheat,472

whereas sorghum features are more crop-specific. This aligns with473

observations in Section 5.1, where sorghum accuracy benefits less474

from CFR learning.

Table 4
Fine-tuning improvement for CFR-driven models. ’Avg-Accu’,
’Max-Accu’, and ’Min-Accu’ represent the average, maximum,
and minimum accuracy (%); ’test’ and ’valid’ indicate test and
validation sets, respectively.

Maize Rice Sorghum Wheat
test valid test valid test valid test valid

Avg-Accu 94.0 + 0.2 95.5 + 0.3 90.8 + 0.1 90.9 + 0.5 90.6 + 0.8 89.9 + 0.8 98.0 + 0.1 97.4 + 0.5
Max-Accu 96.3 + 0.0 97.3 + 0.0 92.5 + 0.1 92.3 + 0.2 92.4 + 0.2 91.6 + 0.3 98.4 + 0.2 97.9 + 0.3
Min-Accu 91.5 + 0.7 93.8 + 0.2 88.9 + 0.1 89.6 + 0.1 87.4 + 2.5 86.5 + 2.7 97.5 + 0.0 96.7 + 0.8

475

We observed that CFR-driven models degrade without freezing476

the backbone or stem during the initial 50 epochs. As exemplified477

in Figure 9 (a), the frozen LnResNet48-B achieves higher accuracy478

stability, compared to the unfrozen counterpart. This initial freez- 479

ing period allows the model to optimize the new classier, while 480

preventing the pre-trained components from losing learned CFRs. 481

Subsequently, unfreezing enables finer-grained adaptation to the 482

target crop. As depicted in Figure 9 (b), LnResNet48-B accuracy 483

ultimately peaks at 92.6% after a temporary dip from 92%. The final 484

92.6% is higher than the 92% achieved in freezing period.

(a)
70%

78%

86%

94%

5 80 155 230

Epoch

Test-Accu-unfrozen
Valid-Accu-unfrozen
Test-Accu-frozen
Valid-Accu-frozen

(b)

92%
92.63%

87%

89%

91%

93%

5 80 155 230

Epoch

Test-Accu-frozen

Figure 9: Accuracy variation of LnResNet48-B in fine-tuning.
’Test-Accu’ and ’Valid-Accu’ denote the accuracy on test and
validation sets, respectively.

485

5.4. Comparison to Machine Learning Models 486

We further compare CFR-driven DNNs against traditional ML 487

models, that rely on spectral preprocessing and feature selection: 488

ML Models: SVM, RF, KNN, Logistic regression (LR), and 489

eXtreme Gradient Boosting (XGB). 490

Spectral Preprocessing: Savitzky-Golay Smoothing, multi- 491

plicative scatter correction, and standard normal variate. 492

Feature Selection: Competitive adaptive reweighted sampling, 493

uninformative variable elimination, successive projections algo- 494

rithm, random frog, and genetic algorithm. 495

Table 5 lists the maximum accuracy achieved by each ML model 496

across all preprocessing and feature selection techniques. 497

CFR-driven DNNs significantly outperform ML models, achiev- 498

ing 7.1% to 26.6% accuracy gains across all crops. For simpler 499

sorghum (7 class) and wheat (6 class) classifications, ML models 500
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Table 5
Maximum Accuracy of Machine Learning Models. ’ML max’
and ’DL max’ denote the maximum accuracy (%) among all
ML models and our CFR-driven DL models, respectively.

Model Maize Rice Sorghum Wheat
KNN 53.2 58.3 72.8 74.3
LR 67.1 62.8 79.4 76.9
RF 65.8 59.2 77.6 83.5
SVM 25.3 41.4 61.1 65.3
XGB 69.7 68.4 85.5 88.2

ML max 69.7 68.4 85.5 88.2
DL max 96.3 92.6 92.6 98.6

attain moderate accuracy of 85.5% and 88.2%, but CFR-driven501

DNNs still relatively reduce misclassification rates by 49% and502

88%. For more complex maize (47 class) and rice (19 class) classi-503

fications, the accuracy of ML models crops considerably to 69.7%504

and 68.4%, while CFR-driven DNNs maintain high performance505

of 96.3% and 92.6%, relatively reducing misclassification rates by506

88.8% and 76.6%. Therefore, the high capacity of DNNs is a key507

factor to improve accuracy, especially for complex tasks.508

5.5. Extended Analysis509

Why CFR Learning works. Training a model via gradient de-510

scent can be conceptualized as searching for suitable local minima511

within the parameter space. Similar to how adding more equations512

reduces the solution space, richer data imposes more constraints513

on the model’s parameters. Consequently, combining single-crop514

datasets into the multi-crop dataset implicitly prunes the param-515

eter space, restricting model optimization to a more promising516

region. This leads to more informed navigation and smoothed loss517

landscape, shortening the path towards favorable local minima.518

This pre-training provides effective starting points for fine-tuning,519

enabling it to discover superior solutions for a specific crop.520

Scaling Law for HSI Deep Learning. This work provides521

empirical validation of the scaling law in two aspects. First, CFRs522

bridge multi-crop data together to expand data size and knowledge523

domain, demonstrably improving model accuracy, robustness, and524

convergence. Second, given sufficient training data, large DNNs525

with substantial parameters consistently outperform small ML526

models, especially in complex tasks. This highlights that while527

high-capacity models are essential for capturing intricate patterns528

in HSI data, their effectiveness relies on sufficient data volume.529

6. Conclusion530

In this work, we exploit CFRs to integrate multi-crop and enlarge531

knowledge domain, facilitating the training of high-capacity mod-532

els. To efficiently process full HSI data end-to-end, we build deeper533

convolution-attention DNNs with HSI-specific modifications. We534

also design a sophisticated CFR-driven training frame with hard-535

ware acceleration, enabling effective HSI modeling. Finally, we536

analyze how CFR learning enhances model performance. Our537

results demonstrate that CFR learning is an effective approach to538

scaling up data richness and model capacity, which are important539

for accurate and efficient crop identification.540

Future researches include exploring state-of-the-art architecture,541

optimizing training frame, more innovative data-integration meth-542

ods, and novel upstream pre-training techniques.543
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