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ABSTRACT
Compared to standard convolution, Winograd algorithm has lower
time complexity and can accelerate the execution of convolutional
neural networks. Previous studies have utilized Winograd to im-
plement 2D convolution on GPUs, mainly using 2D Winograd, and
arranging tensors in NCHW or CHWN format instead of NHWC
to make data access coalesced. Due to the higher space complexity
of Winograd and limited hardware resources, these implementa-
tions are usually confined to small filters. To provide an efficient
and flexible fused-Winograd convolution for NHWC format on
GPUs, we propose Im2col-Winograd. This algorithm decomposes
an ND convolution into a series of 1D convolutions to utilize 1D
Winograd, thereby reducing space complexity and data-access dis-
continuity. The reduced space complexity makes Im2col-Winograd
less restricted by hardware capability, enabling it to accommodate a
wider range of filter shapes. Our implementations support 2-9 filter
widths and do not use any workspace to store intermediate vari-
ables. According to the experiments, Im2col-Winograd achieves a
speedup of 0.788× to 2.05× over the fastest benchmark algorithm in
cuDNN; and shows similar convergence to PyTorch on Cifar10 and
ILSVRC2012 datasets. Along with memory efficiency, the more gen-
eralized acceleration offered by Im2col-Winograd can be beneficial
for extracting features at different convolution scales.
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1 INTRODUCTION
Convolutional neural networks (CNNs) play crucial roles in deep
learning (DL). For CNNs, convolution computing accounts for the
majority of arithmetic complexity, making it a key factor that affects
the execution speed. Fast CNN execution is commonly based on
parallel processors, such as GPUs, CPUs, and FPGAs, as they can
efficiently perform the dot products in convolution.

To address the massive convolution computing in modern CNNs,
Winograd [14] algorithm has been used to reduce the number of
multiplications. Previous works [2, 3, 14, 17, 19, 26, 34] have imple-
mented fast Winograd 2D convolution on GPUs. They generally
use 2DWinograd, and organize tensors in NCHW or CHWN format
rather than NHWC to achieve coalesced data loads. Despite this,
NHWC is one of the most popular tensor formats in CNNs.

Limited by the space complexity ofWinograd and the high-speed
memory capacity of hardware, previous implementations are com-
monly designed for specific small filters, potentially lacking flex-
ibility. Typically, fused-Winograd implementations are restricted
to 3 × 3 filters, while the non-fused can support other filter shapes
that are usually less than or equal to 5 × 5.

To tackle these issues, we propose Im2col-Winograd, an effi-
cient and flexible fused-Winograd convolution for NHWC format
on GPUs. Im2col-Winograd decomposes an ND convolution into a
set of 1D convolutions, and then cumulatively performs 1D Wino-
grad on them. Compared to 2D Winograd, this decomposition im-
proves data-access continuity and reduces space complexity, allow-
ing Im2col-Winograd to support more filter shapes (Section 4.2).

We have implemented 3 types of Im2col-Winograd, supporting
unit-stride 2D convolution and deconvolution with 2-9 filter widths.
All computing stages are fused into one to eliminate the need for
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auxiliary space. To enhance GPU performance: (1) we redesign the
workflow to ensure large cache-block size, consistent performance,
and coalesced memory access; (2) we minimize bank conflicts to
facilitate loads and stores on shared memory; (3) we simplify data
transformations, and optimize kernel functions for particular filter,
channel, and padding sizes; (4) we reuse input-tile overlaps to
reduce data-loading costs; (5) we coordinate multiple kernels to
treat tensor boundaries, thus avoiding unnecessary calculations.

The experiments indicate that Im2col-Winograd achieves 0.788×
to 2.05× speedup over the fastest benchmark algorithm in cuDNN
[3, 26], while maintaining good accuracy. Additionally, Im2col-
Winograd shows comparable convergence to PyTorch [27], when
training CNNs on Cifar10 [12] and ILSVRC2012 [5, 16] datasets.

2 BACKGROUND
The input and output tensors of convolution are respectively re-
ferred to as input and output feature maps (ifms, ofms), with filters
acting on ifms to generate ofms. In CNNs, 2D convolutions involve
channels and batches, so ifms, ofms, and filters are 4D tensors.

There are many ways to implement convolution, like direct [35],
GEMM [3, 10], FFT [23, 30], and Winograd. GEMM is a variant
of direct convolution. FFT is efficient for large filters. Winograd
includes fewer multiplications, leading to a lower time expense,
since hardware executes multiplication much slower than addition.

TheWinograd algorithm was discovered by Toom [29] and Cook
[4] and generalized by Winograd [31]. As depicted in Figure 1, this
algorithm has 4 stages: filter-transformation, input-transformation,
elementwise-multiplication (elem-mul), and output-transformation.
𝐴, 𝐺 , and 𝐷 are transform matrices.𝑊 , 𝑋 , and 𝑌 are tiles respec-
tively of filters, ifms, and ofms. Fused-Winograd integrates the last
3 stages into 1 kernel function (kernel), while the Non-Fused uses
multiple kernels and requires a much larger workspace to store
intermediate variables.

To optimize hardware performance, the dot products of con-
volution are typically transformed into outer products. The outer
products enable a group of threads to share the transformed input
and filter tiles, reducing the workload for a single thread.When deal-
ing with large channels, the complexity of output-transformation
is much lower compared to the other stages. Hence, the time com-
plexity of Winograd primarily arises from the elem-mul stage, and
is equivalent to that of elem-mul in ideal conditions.

When using a filter of size 𝑟 to get 𝑛 outputs, Winograd 𝐹 (𝑛, 𝑟 )
performs only (𝑛 + 𝑟 − 1) elem-muls, at most reducing the mul-
tiplication number to 𝑛+𝑟−1

𝑛𝑟 of standard convolution. By nesting
𝐹 (𝑛, 𝑟 ) with itself, the 2D Winograd 𝐹 (𝑛 × 𝑛, 𝑟 × 𝑟 ) is obtained.
It uses a 𝑟 × 𝑟 filter to generate 𝑛 × 𝑛 outputs, and its formula is
𝑌 = 𝐴𝑇 [(𝐺𝑊𝐺𝑇 ) ⊙ (𝐷𝑇𝑋𝐷)]𝐴.

Winograd convolution has been implemented on GPUs [2, 3, 14,
17, 19, 26, 34], CPUs [15, 22, 32, 33], and FPGAs [18, 20], mainly
designed for unit-stride cases and large data volumes, with 2D
Winograd being the mainstream choice for 2D convolution.

3 MOTIVATION
The primary goal of Im2col-Winograd is to reduce the space com-
plexity of Winograd and the access discontinuity in NHWC format.

Figure 1: The 1D Winograd and Standard Convolution. This
figure presents the workflow of Winograd 𝐹 (2, 3).

The reduced time complexity of Winograd comes with increased
space complexity. Because of its larger data-access units but fewer
multiplications, Winograd requires loading more items to reach
the same outer-product scale as standard convolution. 𝐹 (𝑛, 𝑟 ) uses
𝛼 = (𝑛 + 𝑟 − 1) variables to record the intermediate states, greater
than the 𝑛 variables of standard convolution. As a result, Winograd
demands more memory and registers, and its lower multiplication
density poses challenges in hiding memory latency.

On GPUs, fused-Winograd needs a much smaller workspace in
global memory than the non-fused, which is beneficial for large
models. Fused-Winograd stores transformed tiles in shared memory
(SMEM) to execute outer products. Since a streaming multiproces-
sor (SM) has limited SMEM and registers, the outer-product scale
and the state-count1 𝛼𝑁 of NDWinograd are mutually constrained.
Increased 𝛼 can support larger filters and reduce more multiplica-
tions, while greater outer-product scale commonly brings better
hardware performance. Therefore, the complexity and applicability
of Winograd restrict the hardware efficiency, and vice versa.

When arranging tensors in NHWC format, the data access within
2D tiles of 2D Winograd is discontinuous and difficult to be vector-
ized. This is because the items are spaced at channel sizes, and the
distances between different rows are determined by the product
of width and channel size. Big channels and feature maps in mod-
ern CNNs further exacerbate this challenge. Moreover, due to the
limited registers and SMEM, it’s challenging to vectorize 2D input
tiles along the channel axis in a single thread.

To reduce space complexity, it’s essential to minimize 𝛼𝑁 and
auxiliary space, while ensuring similar time complexity. To reduce
data-access discontinuity, high-dimensional tiles should be avoided.
Both goals can be achieved, by decomposing an ND convolution
into 1D convolutions to use 1D Winograd.

4 DESIGN OVERVIEW
This paper introduces the GPU implementation of Im2col-Winograd
for 2D convolutional layers, FP32 datatype, and NHWC format.
Unless specified, the following introductions are in the view of
forward convolution. The math notations are listed in Table 1.
1The minimum number of variables to characterize the state of a system.
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Figure 2: Im2col-Winograd convolution. This figure depicts the workflow of Im2col-Winograd Γ4 (2, 3).

4.1 Proposed Method
Im2col-Winograd with 𝛼 state-count and 𝐹 (𝑛, 𝑟 ) is represented as
Γ𝛼 (𝑛, 𝑟 ). As shown in Figure 2, Γ𝛼 (𝑛, 𝑟 ) consists of 2 stages:

Stage1: Im2col The filters𝑊 and ifms𝑋 are respectively trans-
formed into matrices𝐴 ∈ 𝑅𝐺𝐾 ×𝐺𝑁 , and 𝐵 ∈ 𝑅𝐺𝑀×𝐺𝐾 , using
Im2col operator, where 𝐺𝑁 = 𝑂𝐶 , 𝐺𝑀 = 𝑁 ∗𝑂𝐻 ∗𝑂𝑊 , and
𝐺𝐾 = 𝐼𝐶 ∗ 𝐹𝐻 ∗ 𝐹𝑊 .

Stage2: Winograd Use 𝑛 × 𝑟 and 𝑟 × 1 sliding windows to
move across 𝑛 rows of 𝐴 and 1 column of 𝐵 without over-
lapping. Use 𝐹 (𝑛, 𝑟 ) to conduct 1D convolution on the items
selected by these sliding windows. The convolution results
are accumulated to calculate 𝑛 items of the ofms 𝑌 .

Since Im2col is an index mapping, these 2 stages are fused into one,
thus avoiding auxiliary space to store intermediate variables.

The fast memory on GPUs, like SMEM and registers, is relatively
small, so the cache-blocking strategy [13] is adopted to maximize
data reuse. To effectively hide memory latency, the cache-block size
should be a minimum of 32 × 32 × 8. Specifically, in each iteration,
a thread-block (block) at least loads 8 sets of 32 input tiles and
32 filter tiles, and requires 4𝛼 (32 + 32)8 bytes SMEM to store the
transformed tiles (also need SMEM for other purposes). Since the
max SMEM for a block is 49152 bytes, 𝛼 must ≤ 24 and is preferably
a power of 2. Consequently, suitable options for 𝛼 are 4, 8, and 16.

As shown in Figure 3, we implemented 4/8/16 state Im2col-
Winograd, for unit-stride 2D convolution and deconvolution with
2-9 filter widths. They are developed in C++ without PTX or SASS
(assembly languages of CUDA). Although this approach may not
achieve the max hardware efficiency, it offers better portability,
readability, and maintainability.

Figure 3: 4/8/16 state Im2col-Winograd implementations.

4.2 Advantages over 2D Winograd
Im2col-Winograd is more flexible. It only restricts 1 filter dimension
(𝐹𝑊 ), unlike 2D Winograd restricts two (𝐹𝐻 and 𝐹𝑊 ). Given the

Table 1: Math Notations of 2D Convolution

Symbol Meaning

𝐼𝐻 , 𝐼𝑊 , 𝐼𝐶 Input height, width, and channel size
𝑂𝐻 ,𝑂𝑊 ,𝑂𝐶 Output height, width, and channel size

𝐹𝐻 , 𝐹𝑊 Filter height and width
𝑁 Batch size
𝑋 The ifms 𝑋 ∈ 𝑅𝑁×𝐼𝐻 ×𝐼𝑊 ×𝐼𝐶
𝑊 The filters𝑊 ∈ 𝑅𝑂𝐶×𝐹𝐻 ×𝐹𝑊 ×𝐼𝐶
𝑌 The ofms 𝑌 ∈ 𝑅𝑁×𝑂𝐻 ×𝑂𝑊 ×𝑂𝐶

𝑝𝐻 , 𝑝𝑊 Padding size on height and width axis

constraint that𝛼𝑁 ≤ 16, 2DWinograd supports 2 × 2 to 3 × 3 filters,
with 𝐹 (3 × 3, 2 × 2) to 𝐹 (2 × 2, 3 × 3) as the selections; on the other
hand, Im2col-Winograd can deal with 2-15 filter widths, offering
much more options including Γ4 (3, 2) to Γ4 (2, 3), Γ8 (7, 2) to Γ8 (2, 7),
and Γ16 (15, 2) to Γ16 (2, 15). Furthermore, Im2col-Winograd can be
applied to ND convolution, by expanding Stage1 Im2col to ND,
while remaining Stage2 unchanged.

Im2col-Winograd can be more lightweight. For instance, the
𝐹 (2 × 2, 3 × 3) is adopted in most FP32 fused-Winograd implemen-
tation. Both 𝐹 (2 × 2, 3 × 3) and Γ8 (6, 3) reduce the multiplication
number to 1

2.25 . However, 𝐹 (2 × 2, 3 × 3) uses 4
2 states and loads

25
4 items per output, while Γ8 (6, 3) only uses 8 states and loads 33

6
items per output. Potentially, Γ8 (6, 3) requires fewer registers and
SMEM, and has advantages in hiding memory latency.

The data access ismore continuous in 1D tiles of Im2col-Winograd.
This also leads to shorter distances between work areas of blocks,
enabling data to stay in L2 cache for a longer period.

5 IMPLEMENTATION DETAIL
In our implementations, the zero-padding on ifms is implicitly
achieved using conditional statements, and the texture memory is
utilized to prevent warp divergence and expedite input-tile loading.
The elem-muls are transformed into outer products in 8 × (8 × 8)
units, where multiplications and additions are fused into multiply-
add instructions to reduce calculating expenses. To mitigate the
access discontinuity of NHWC format, a warp, consisting of 32
threads, is designed to access items in adjacent channels.
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Algorithm 1 The simplified block workflow of Γ8 (𝑛, 𝑟 ).
(1) 𝛼 , 𝐵𝐾 , 𝐵𝑁 , and 𝐵𝑀 respectively equal 8, 8, 64, and 32.
(2) 𝐴(𝛼,𝑛) , 𝐺 (𝛼,𝑟 ) , and 𝐷 (𝛼 ) are transform matrices of 𝐹 (𝑛, 𝑟 ).
(3) 𝑡𝑥 and 𝑡𝑦 are thread indices.

Function loadTiles(𝑋,𝑊 ,𝐺𝑠, 𝐷𝑠,𝐺𝑖 ,𝐺𝑘 , 𝐷𝑖 , 𝐷𝑘 , 𝑏𝑢𝑓 )
𝑊𝑡𝑖𝑙𝑒 [2] [𝑟 ], 𝑋𝑡𝑖𝑙𝑒 [𝛼] ← 2 tiles of𝑊 , 1 tile of 𝑋
𝐺𝑡𝑖𝑙𝑒 [2] [𝛼], 𝐷𝑡𝑖𝑙𝑒 [𝛼] ← 𝐺 (𝛼,𝑟 )𝑊𝑡𝑖𝑙𝑒 , 𝐷 (𝛼 )

𝑇𝑋𝑡𝑖𝑙𝑒
𝐺𝑠 [𝑏𝑢𝑓 ] [𝐺𝑘 ] [] [𝐺𝑖 : 𝐺𝑖 + 2] ← 𝐺𝑡𝑖𝑙𝑒 [0 : 2] []
𝐷𝑠 [𝑏𝑢𝑓 ] [𝐷𝑘 ] [] [𝐷𝑖 ] ← 𝐷𝑡𝑖𝑙𝑒 []
__syncthreads()

Function outerProduct(𝑣 [64],𝐺𝑠, 𝐷𝑠,𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 , 𝑢𝑥 , 𝑏𝑢𝑓 )
for (𝑖𝑘 ← 8; 𝑖𝑘 < 8; 𝑖𝑘 ← 𝑖𝑘 + 1)

𝑎[8] ← 𝐺𝑠 [𝑏𝑢𝑓 ] [𝑖𝑘 ] [𝑢𝑥 ] [𝐺𝐼𝑑𝑥 : 𝐺𝐼𝑑𝑥 + 8]
𝑏 [8] ← 𝐷𝑠 [𝑏𝑢𝑓 ] [𝑖𝑘 ] [𝑢𝑥 ] [𝐷𝐼𝑑𝑥 : 𝐷𝐼𝑑𝑥 + 8]
𝑣 [] ← 𝑣 [] + (𝑎[] × 𝑏 [])

𝑏𝑢𝑓 ← 𝑏𝑢𝑓 ˆ 1 # switch double buffer, Bitwise XOR
Function transformOutput(𝑣 [64], 𝑌 ,𝑢𝑥 , 𝑢𝑦, 𝑌𝑠)

for (𝑖 ← 0; 𝑖 < 2; 𝑖 ← 𝑖 + 1)
__syncthreads()
for ( 𝑗 ← 0; 𝑗 < 4; 𝑗 ← 𝑗 + 2)
𝑌𝑠 [𝑢𝑥 ] [𝑢𝑦] [] ← 1

4 of 𝑣 # 16 items
__syncthreads()
𝑌𝑡𝑖𝑙𝑒 [ 𝑗 + 0] [0 : 𝑛] ← 𝐴𝑇(𝛼,𝑛)𝑌𝑠 [] [𝑢𝑦] [2𝑢𝑥 + 0]
𝑌𝑡𝑖𝑙𝑒 [ 𝑗 + 1] [0 : 𝑛] ← 𝐴𝑇(𝛼,𝑛)𝑌𝑠 [] [𝑢𝑦] [2𝑢𝑥 + 1]

store 𝑌𝑡𝑖𝑙𝑒 [] [] to 𝑌 # 4 tiles

1: __shared__ 𝐺𝑠 [2] [𝐵𝐾 ] [𝛼] [𝐵𝑁 ], 𝐷𝑠 [2] [𝐵𝐾 ] [𝛼] [𝐵𝑀 ]
2: calculate 𝐺𝑘 , 𝐺𝑖 , 𝐷𝑘 , 𝐷𝑖 , 𝑢𝑦, 𝑢𝑥 based on 𝑡𝑥 , 𝑡𝑦, 𝛼

3: calculate 𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 based on 𝑢𝑦
4: 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 [64], 𝑏𝑢𝑓 ← ®0, 0
5: for (𝑓 ℎ ← 0; 𝑓 ℎ < 𝐹𝐻 ; 𝑓 ℎ ← 𝑓 ℎ + 1)
6: loadTiles(𝑋,𝑊 ,𝐺𝑠, 𝐷𝑠,𝐺𝑖 ,𝐺𝑘 , 𝐷𝑖 , 𝐷𝑘 , 𝑏𝑢𝑓 )
7: for (𝑜𝑖𝑐 ← 𝐵𝐾 ;𝑜𝑖𝑐 < 𝐼𝐶 ;𝑜𝑖𝑐 ← 𝑜𝑖𝑐 + 𝐵𝐾 )
8: outerProduct(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟,𝐺𝑠, 𝐷𝑠,𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 , 𝑢𝑥 , 𝑏𝑢𝑓 )
9: loadTiles(𝑋,𝑊 ,𝐺𝑠, 𝐷𝑠,𝐺𝑖 ,𝐺𝑘 , 𝐷𝑖 , 𝐷𝑘 , 𝑏𝑢𝑓 )
10: outerProduct(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟,𝐺𝑠, 𝐷𝑠,𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 , 𝑢𝑥 , 𝑏𝑢𝑓 )
11: __shared__ 𝑌𝑠 [𝛼] [ 𝐵𝑁2 ] [16] # reuse 𝐺𝑠
12: transformOutput(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 𝑌 ,𝑢𝑥 , 𝑢𝑦, 𝑌𝑠)

5.1 Basic Workflow
The tasks of Γ𝛼 (𝑛, 𝑟 ) are distributed among 𝑂𝐶

𝐵𝑁
×( 𝑁𝑂𝐻

𝐵𝑀

𝑂𝑊
𝑛 ) blocks.

This blocking approach is beneficial for consistent performance,
since the block number is determined by the dimensions of both
feature maps and channels. For example, the early layers of CNNs
commonly have small channels but large feature maps, while the
end layers have large channels but small feature maps. However,
the product of channel size and feature-map size tends to be fair
across all layers, so the block number can be consistent.

Algorithm 1 and 2 show the block workflows of Γ8 (𝑛, 𝑟 ) and
Γ16 (𝑛, 𝑟 ). The workflow of Γ4 (𝑛, 𝑟 ) is analogized to that of Γ8 (𝑛, 𝑟 ).

Each block has 16× 16 threads, and performs 𝐹𝐻 × 𝐼𝐶
𝐵𝐾

iterations
to compute 𝐵𝑁 ×𝐵𝑀 output tiles. 𝐵𝐾 is 8 for all values of 𝛼 . 𝐵𝑁 ×𝐵𝐾
is 64 × 64 when 𝛼 is 4, 64 × 32 when 𝛼 is 8, and 32 × 32 when 𝛼 is

Algorithm 2 The simplified block workflow of Γ16 (𝑛, 𝑟 ).
(1) 𝛼 , 𝐵𝐾 , 𝐵𝑁 , and 𝐵𝑀 respectively equal 16, 8, 32, and 32.
(2) and (3) are the same as those of Algorithm 1.

Function storeTiles(𝑋,𝑊 ,𝐺𝑠, 𝐷𝑠,𝐺𝑖 ,𝐺𝑘 , 𝐷𝑖 , 𝐷𝑘 )
𝐺𝑡𝑖𝑙𝑒 [𝛼], 𝐷𝑡𝑖𝑙𝑒 [𝛼] ← 𝐺 (𝛼,𝑟 )𝑊𝑡𝑖𝑙𝑒 , 𝐷

𝑇
(𝛼 )𝑋𝑡𝑖𝑙𝑒

𝐺𝑠 [𝐺𝑘 ] [] [𝐺𝑖 ], 𝐷𝑠 [𝐷𝑘 ] [] [𝐷𝑖 ] ← 𝐺𝑡𝑖𝑙𝑒 [], 𝐷𝑡𝑖𝑙𝑒 []
__syncthreads()

Function outerProduct(𝑣 [64],𝐺𝑠, 𝐷𝑠,𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 , 𝑢𝑥 )
for (𝑖𝑘 ← 8; 𝑖𝑘 < 8; 𝑖𝑘 ← 𝑖𝑘 + 1)

𝑎[8] ← 𝐺𝑠 [𝑖𝑘 ] [𝑢𝑥 ] [𝐺𝐼𝑑𝑥 : 𝐺𝐼𝑑𝑥 + 8]
𝑏 [8] ← 𝐷𝑠 [𝑖𝑘 ] [𝑢𝑥 ] [𝐷𝐼𝑑𝑥 : 𝐷𝐼𝑑𝑥 + 8]
𝑣 [] ← 𝑣 [] + (𝑎[] × 𝑏 [])

Function transformOutput(𝑣 [64], 𝑌 ,𝑢𝑥 , 𝑢𝑦, 𝑌𝑠)
for (𝑖 ← 0; 𝑖 < 4; 𝑖 ← 𝑖 + 2)

𝑌𝑠 [0] [𝑢𝑥 ] [𝑢𝑦] [] ← 1
4 of 𝑣 # 16 items

𝑌𝑠 [1] [𝑢𝑥 ] [𝑢𝑦] [] ← 1
4 of 𝑣 # 16 items

__syncthreads()
𝑌𝑡𝑖𝑙𝑒 [𝑖 + 0] [0 : 𝑛] ← 𝐴𝑇(𝛼,𝑛)𝑌𝑠 [0] [] [𝑢𝑦] [𝑢𝑥 ]
𝑌𝑡𝑖𝑙𝑒 [𝑖 + 1] [0 : 𝑛] ← 𝐴𝑇(𝛼,𝑛)𝑌𝑠 [1] [] [𝑢𝑦] [𝑢𝑥 ]

store 𝑌𝑡𝑖𝑙𝑒 [] [] to 𝑌 # 4 tiles

1: __shared__ 𝐺𝑠 [𝐵𝐾 ] [𝛼] [𝐵𝑁 ], 𝐷𝑠 [𝐵𝐾 ] [𝛼] [𝐵𝑀 ]
2: calculate 𝐺𝑘 , 𝐺𝑖 , 𝐷𝑘 , 𝐷𝑖 , 𝑢𝑦, 𝑢𝑥 based on 𝑡𝑥 , 𝑡𝑦, 𝛼

3: calculate 𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 based on 𝑢𝑦
4: 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 [64] ← ®0
5: for (𝑓 ℎ ← 0; 𝑓 ℎ < 𝐹𝐻 ; 𝑓 ℎ ← 𝑓 ℎ + 1)
6: 𝑊𝑡𝑖𝑙𝑒 [𝑟 ], 𝑋𝑡𝑖𝑙𝑒 [𝛼] ← 1 tiles of𝑊 , 1 tile of 𝑋
7: for (𝑜𝑖𝑐 ← 𝐵𝐾 ;𝑜𝑖𝑐 < 𝐼𝐶 ;𝑜𝑖𝑐 ← 𝑜𝑖𝑐 + 𝐵𝐾 )
8: storeTiles(𝑋,𝑊 ,𝐺𝑠, 𝐷𝑠,𝐺𝑖 ,𝐺𝑘 , 𝐷𝑖 , 𝐷𝑘 )
9: outerProduct(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟,𝐺𝑠, 𝐷𝑠,𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 , 𝑢𝑥 )
10: 𝑊𝑡𝑖𝑙𝑒 [𝑟 ], 𝑋𝑡𝑖𝑙𝑒 [𝛼] ← 1 tiles of𝑊 , 1 tile of 𝑋
11: __syncthreads()
12: storeTiles(𝑋,𝑊 ,𝐺𝑠, 𝐷𝑠,𝐺𝑖 ,𝐺𝑘 , 𝐷𝑖 , 𝐷𝑘 )
13: outerProduct(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟,𝐺𝑠, 𝐷𝑠,𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 , 𝑢𝑥 )
14: __syncthreads()
15: __shared__ 𝑌𝑠 [2] [𝛼] [ 𝐵𝑁2 ] [16] # reuse 𝐺𝑠, 𝐷𝑠
16: transformOutput(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 𝑌 ,𝑢𝑥 , 𝑢𝑦, 𝑌𝑠)

16. Such 𝐵𝑁 × 𝐵𝑀 × 𝐵𝐾 cache-block size is large enough to ensure
computing intensity and hide memory latency.

Each thread has 64 accumulators to compute 1
𝛼 of Winograd

states. Via SMEM, every 256
𝛼 threads with the same 𝑢𝑦 share their

transformed tiles to execute outer products and update accumula-
tors; every 𝛼 threads with the same𝑢𝑥 exchange their accumulators
to accomplish the output-transformation.

In every iteration, each thread loads 𝐵𝑁32 and 𝐵𝑀
32 tiles from filters

and ifms, transforms and stores these tiles in SMEM, and then
executes (8 × 8) outer products for 𝐵𝐾 times. Following the outer-
product calculation, threads move on to pre-fetch and transform
tiles for the next iteration. The outer products, tile pre-fetching, and
tile transformation in different warps are concurrently executed on
a SM, enabling the computation and memory access to overlap and
hide each other’s latency. To achieve 𝐵𝑁 ×𝐵𝑀×𝐵𝐾 cache-block size,
a block of Γ𝛼 (𝑛, 𝑟 ) requires 4𝛼 (𝐵𝑁 + 𝐵𝑀 )𝐵𝐾 bytes SMEM. When 𝛼
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is 4 or 8, the required SMEM ≤ 1
2 of the max SMEM (24576 bytes),

so the double-buffered SMEM is constructed to further enhance the
warp-level parallelism.

Because of the limited SMEM in a block, the output-transformation
is completed over 4 rounds. In each round, individual threads store
1
4 of their accumulators to SMEM, load 16 items from the trans-
posed SMEM, and calculate 16

𝛼 output tiles in continuous channels.
In order to enhance bandwidth, the output tiles of 𝛼4 rounds are
merged and written to global memory in 128-bit units.

To further reduce register consumption and simplify calculations,
we provide templates for particular filter heights and channel sizes.
In the context of unit-stride convolution, 𝑟 × 𝑟 filters are typically
used with ⌊ 𝑟2 ⌋ padding to maintain the size of feature maps, like
3 × 3 filters with a padding of 1. Based on this observation, we
optimized certain kernels of Γ𝛼 (𝑛, 𝑟 ) for 𝑝𝑊 ≤ ⌊ 𝑟2 ⌋.

For convolution in forward propagation, filters are transposed
into 𝐹𝐻 × 𝐹𝑊 × 𝐼𝐶 × 𝑂𝐶 format, to achieve more vectorized and
continuous data loads. The transposition cost is relatively small,
since feature maps are typically much larger than filters, especially
when dealing with big data volumes. For backward deconvolution,
the 180-degree filter-rotation is integrated into filter-transformation.
The backward kernels have similar performance to the forward
kernels without rearranging filters.

5.2 Reduce Bank Conflicts
The bank conflicts on SMEM negatively effect performance, and
can stem from both store and load operations.

In Algorithm 1 and 2, the thread indexed by (𝑡𝑦, 𝑡𝑥 ) uses (𝐺𝑘 ,𝐺𝑖 ),
(𝑋𝑘 , 𝑋𝑖 ) and (𝑢𝑥 , 𝑢𝑦) to store data in SMEM, where:

[𝐺𝑘 , 𝐺𝑖 ] = [𝑡𝑦%8, (2𝑡𝑥 + 1𝑡𝑦>7) ∗ (𝐵𝑁 /32)]
[𝑋𝑘 , 𝑋𝑖 ] = [𝑡𝑥%8, (2𝑡𝑦 + 1𝑡𝑥>7) ∗ (𝐵𝑀/32)]
[𝑢𝑥 , 𝑢𝑦] = [ 𝑡𝑦/𝜃, 16(𝑡𝑦%𝜃 ) + 𝑡𝑥 ] with 𝜃 = 16/𝛼

When storing data in 𝐷𝑠 and 𝑌𝑠 , threads within a warp compete
for access to the same bank on SMEM, leading to conflicts. We pad
SMEM arrays to distribute store operations across different banks,
thus alleviating conflicts. Since the data is stored in 128-bit units,
the last dimensions of SMEM arrays are padded to multiples of 4.
The padding details are as follows:

Γ 8 (𝑛, 𝑟 ): 𝑌𝑠 [8] [32 + 1] [16 + 4]
Γ16 (𝑛, 𝑟 ): 𝑌𝑠 [2] [16] [16 + 1] [16 + 4], 𝐷𝑠 [8] [16] [32 + 4]
This padding approach can not be applied to 𝐷𝑠 for Γ8 (𝑛, 𝑟 ),

since 𝐷𝑠 and 𝐺𝑠 have allocated the maximum SMEM. As an al-
ternative method, we adjust 𝑋𝑖 ← (𝑋𝑖 + 4𝑋𝑘 )%32. Accordingly,
in the outerProduct function, the 𝑏 ← 𝐷𝑠 mapping is adjusted to
𝑏 [𝑖𝑑𝑥] ← 𝐷𝑠 [𝑏𝑢𝑓 ] [𝑖𝑘 ] [𝑢𝑥 ] [(𝐷𝐼𝑑𝑥 + 4𝑖𝑘 + 𝑖𝑑𝑥)%32].

In outerProduct functions, the 128-bit (4 continuous FP32 items)
loads from SMEM can lead to bank conflicts. Within a warp, the 32
threads share the same warpIdx, and have distinct laneIdxes from
0 to 31. Based on the laneIdxes, the loading offset (𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 ) is
modified to prevent these conflicts. The laneIdx arrangement of
Γ8 (𝑛, 𝑟 ) is illustrated in Figure 4. For a specific thread, (𝐺𝐼𝑑𝑥 , 𝐷𝐼𝑑𝑥 )
is calculated as follows:

𝐺𝐼𝑑𝑥 = 8 ∗ ((𝑢𝑦%2) + (𝑢𝑦/𝜃 ) ∗ 2) with 𝜃 = 𝐵𝑀/8
𝐷𝐼𝑑𝑥 = 8 ∗ ((𝑢𝑦%𝜃 )/2)

Figure 4: The laneIdx arrangement of Γ8 (𝑛, 𝑟 ). To avoid SMEM
bank conflicts, 𝑙𝑎𝑛𝑒𝐼𝑑𝑥𝑒𝑠 are arranged in a Z-shape. As illus-
trated, the 𝑙𝑎𝑛𝑒1 thread loads 8-15 items of 𝐺𝑠 [𝑏𝑢𝑓 ] [𝑖𝑘 ] [𝑢𝑥 ]
and 0-7 items of 𝐷𝑠 [𝑏𝑢𝑓 ] [𝑖𝑘 ] [𝑢𝑥 ], using 2 ∗ 2 128-bit loading.

5.3 Simplify Data Transformations
In Γ8 (𝑛, 𝑟 ) and Γ16 (𝑛, 𝑟 ), the data transformations are relatively ex-
pensive but can be simplified. The transform matrices of 𝐹 (𝑛, 𝑟 )
havemany solutions. The predominant solution, detailed in Figure 5,
is computed using interpolation points at {0, 1,−1, 2,−2, 12 ,−

1
2 , 3,−3...}.

For 𝐴 ∈ 𝑅𝛼×𝑛 , 𝐺 ∈ 𝑅𝛼×𝑟 , and 𝐷𝑇 ∈ 𝑅𝛼×𝛼 in this solution, their
(2𝑘 + 1)𝑡ℎ and (2𝑘 + 2)𝑡ℎ row vectors have equal items at even
positions and opposite items at odd positions, with 𝑘 starting at
0. Based on this rule, the (2𝑘 + 1)𝑡ℎ and (2𝑘 + 2)𝑡ℎ items of trans-
formed tiles can be calculated together, in which the multiplication
outcomes can be reused, thus reducing the number of necessary
multiplications by nearly half. The simplified transformations not
only reduce the time delay between 2 iterations of outer products,
but also improve the computing intensity.
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Figure 5: Examples of Winograd Transform Matrices.

5.4 Reuse Input Tile Overlaps
As shown in Figure 6, two adjacent input tiles of 𝐹 (𝑛, 𝑟 ) have (𝑟 −1)
overlapping items. This 𝑟−1𝛼 overlap can be reused in fast memory
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(SMEM, registers) to reduce the access to slower memory (global
memory), thus improving speed.

Figure 6: The Input Tile Overlap. For 𝐹 (4, 5), adjacent input
tiles have (5 − 1 = 4) overlapping items, as illustrated.

In Γ4 (𝑛, 4), this overlap can be directly reused, since each thread
loads 2 input tiles per iteration. To reuse this overlap in Γ8 (𝑛, 𝑟 ) and
Γ16 (𝑛, 𝑟 ) where each thread only loads 1 input tile, the most effective
approach we have discovered is merging the tasks of 2 threads into
1 thread. This approach brings both benefits and drawbacks:
↑ Lower cost of data loading The average cost of loading 1

input tile is decreased from 𝛼 items to (𝛼 − 𝑟−1
2 ) items. The

filter data loading is better vectorized in ( 𝐵𝑀16 ∗ 32) bit units.
↑Higher data-ruse The outer-product scale increases from

8 × (8 × 8) to 8 × (16 × 8), raising the computing intensity
and the utilization of high-speed memory.

↓ Lower parallelism The thread number per block reduces
from 16 × 16 to 16 × 8, with each thread using twice as
many registers as before. Consequently, the number of active
threads decreases, negatively impacting performance.

Based on the experimental findings, the benefits surpass the
drawbacks when 𝑟−1

𝛼 ≥ 0.4375. Concretely, the data-reuse variants
Γ𝑟𝑢𝑠𝑒8 (4, 5), Γ𝑟𝑢𝑠𝑒8 (3, 6), Γ𝑟𝑢𝑠𝑒8 (2, 7), Γ𝑟𝑢𝑠𝑒16 (9, 8), and Γ𝑟𝑢𝑠𝑒16 (8, 9) have
higher performance compared to their initial versions.

5.5 Boundary Treatment
Each output tile of Γ𝛼 (𝑛, 𝑟 ) contains 𝑛 items along the width (𝑂𝑊 )
axis. When 𝑂𝑊 %𝑛 ≠ 0 and there is no boundary treatment, these
tiles can not exactly cover the ofms. If the boundary treatment is
implemented using conditional statements, it requires additional
registers to check coordinates and causes redundant computations,
especially when ofms are small. For example, when Γ8 (6, 3) is used
and 𝑂𝑊 is 7, there are 2 output tiles along the width axis, and 5

6 of
the computations involved in the second tile is unnecessary.

To address these problems, we achieve the boundary treatment
differently, as depicted in Figure 7. The ofms are divided into mul-
tiple segments along the width axis, with each associated with a
distinct kernel. The faster kernel has a higher priority to encom-
pass as large a segment as possible, and this segment can be exactly
covered by the kernel. There is no overlap between segments, and
the variety of kernels is minimized. GEMM convolution processes
the final remaining segment that Im2col-Winograd can not cover.

5.6 Further Enlarge Cache-Block Size
Since many channel sizes in modern CNNs are multiples of 64, and
Γ16 (𝑛, 𝑟 ) still has 16384 bytes SMEM available for allocation, we
developed a variant Γ𝑐6416 (𝑛, 𝑟 ) by enlarging the cache-block size
𝐵𝑁 × 𝐵𝑀 × 𝐵𝐾 from 32 × 32 × 8 to 64 × 32 × 8.

Figure 7: Tensor Boundary Treatment. When ensuring the
fastest speed, ofms are divided along the width (𝑂𝑊 ) axis,
and then distributed among multiple kernels. As depicted,
when 𝐹𝑊 is 3, Γ8 (6, 3), Γ𝑟𝑢𝑠𝑒4 (2, 3), Γ4 (2, 3), and 𝐺𝐸𝑀𝑀 are se-
quentially assigned with the largest divisible part of 𝑂𝑊 ,
(𝑂𝑊%6), (𝑂𝑊%4), and (𝑂𝑊%2) by 6, 4, 2, and 1.

The doubled 𝐵𝑁 increases the arithmetic computation intensity
(measured in operation/byte) from 256

𝛼+𝑟 to 512
𝛼+2𝑟 , which is even

higher than the 512
𝛼+2𝑟+𝑛 of Γ𝑟𝑢𝑠𝑒16 (𝑛, 𝑟 ), making Γ𝑐6416 (𝑛, 𝑟 ) has the

best efficiency when dealing with large data volumes. For instance,
the intensity of Γ𝑐6416 (8, 9) is 15.06, which is 47.1% higher than the
10.24 of Γ16 (8, 9), and 23.5% higher than the 12.19 of Γ𝑟𝑢𝑠𝑒16 (8, 9).

5.7 Integration into Dragon-Alpha
Dragon-Alpha (Alpha) is a Java tensor computing framework that
can be used to execute DL algorithms. Cu32, a GPU library of
Alpha, is designed for FP32 computations. Alpha and cu32 are fully
developed by us, and only require JDK and CUDA for execution.

The kernels of Im2col-Winograd have been merged to form a
higher-level encapsulation in cu32, and have been integrated into
Alpha-1.2 through the Java native interface. Im2col-Winograd is
employed for unit-stride convolution and deconvolution, while
other algorithms handle the non-unit-stride cases.

6 EXPERIMENTS
We carried out 3 experiments to evaluate Im2col-Winograd. The 1𝑠𝑡
compares the performance between Im2col-Winograd and cuDNN.
The 2𝑛𝑑 accesses the accuracy of Im2col-Winograd, using FP64-
CPU convolution as the benchmark. The 3𝑟𝑑 uses Im2col-Winograd
to train CNNs on Cifar10 and ILSVRC2012, with comparison to
PyTorch. Unless specified, the calculations were in FP32 datatype.

In experiment 1 and 2, Γ𝛼 (𝑛, 𝑟 ) is performed with 𝑟 × 𝑟 filters
and ⌊ 𝑟2 ⌋ padding, for ∀𝑟 ∈ {2, 3, 4, 5, 6, 7, 8, 9}. For all test cases, the
input-channel size 𝐼𝐶 equals the output-channel size 𝑂𝐶 .

6.1 Experiment 1: Performance Analysis
To evaluate the performance of Im2col-Winograd, we used it to
perform 2D convolution on RTX3060ti and RTX4090 GPUs, which
are respectively based on Ampere and Lovelace architectures.

6.1.1 Methods. We use nvcc-11.5 and cuDNN-8.9.0 for RTX3060ti,
while nvcc-11.8 and cuDNN-8.9.4 are utilized for RTX4090.

In cuDNN [3], the Implict_Precomp_GEMM and Fused_Winograd
algorithms were used as benchmarks, because they are as memory-
efficient as Im2col-Winograd. The Non_Fused_Winograd and FFT
algorithms are unsuitable for benchmarking, since they require
a much larger workspace to achieve a much greater reduction
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Figure 8: The performance on RTX3060ti. The shapes of ofms are in 𝑁 ×𝑂𝐻 ×𝑂𝑊 ×𝑂𝐶 format.
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Figure 9: The performance on RTX4090. The shapes of ofms are in 𝑁 ×𝑂𝐻 ×𝑂𝑊 ×𝑂𝐶 format.

in time complexity. The Fused_Winograd is restricted to NCHW
format and 3 × 3 filters, so it’s only comparable to Γ8 (6, 3). The
Implict_Precomp_GEMM was executed in both NHWC and NCHW
formats, and it’s the fastest algorithm supporting NHWC format,
which warrants special attention.

We use Gflop/s to measure performance, denoting 109 FP32
operations per second. For a specific convolution, the performance
of an algorithm is 2𝑁𝑂𝐶𝑂𝐻𝑂𝑊 𝐹𝐻 𝐹𝑊 𝐼𝐶

𝑠𝑖𝑛𝑔𝑙𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 . Each algorithm was con-
secutively executed 1000 times, and the total time was averaged
to estimate the 𝑠𝑖𝑛𝑔𝑙𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 . Before measurement, each
algorithm was executed once to optimize performance.

6.1.2 Analysis. Figure 8 and 9 present the performance. ’*’ means
ignoring the time cost of filter-transposition.

According to the results, Im2col-Winograd outperforms cuDNN
in most cases, except for Γ8 (7, 2) and Γ8 (2, 7). As shown in Ta-
ble 3, Im2col-Winograd achieves 0.788-2.05× speedup over the
fastest benchmark algorithm, and 0.788-2.233× speedup over the

Table 2: The Speedup over cuDNN. Fastest denotes the fastest
benchmark algorithm of cuDNN; NHWC GEMM denotes the
Implict_Precomp_GEMM for NHWC format.

Algorithm
RTX3060ti RTX4090

Fastest Algorithm NHWC GEMM Fastest Algorithm NHWC GEMM

Γ8 (4, 5) 0.989-1.516× 0.847-1.442× 0.895-1.442×

Γ8 (5, 4) 0.929-1.384× 0.893-1.386× 0.910-1.386×

Γ8 (3, 6) 0.991-1.354× 0.918-1.298×

Γ8 (6, 3) 0.960-1.221× 0.960-1.358× 0.938-1.477× 0.947-2.074×

Γ8 (2, 7) 0.852-1.076× 0.887-1.110× 0.861-0.968× 0.861-1.087×

Γ8 (7, 2) 0.841-1.243× 0.788-1.034× 0.788-1.428×

Γ16 (10, 7) 1.148-1.821× 1.148-1.842× 1.118-1.725× 1.118-1.895×

Γ16 (9, 8) 1.445-2.050× 1.445-2.233× 1.293-1.671× 1.293-1.708×

Γ16 (8, 9) 1.321-1.976× 1.264-1.664×

Implict_Precomp_GEMM for NHWC format. Overall, these results
highlight the efficiency of Im2col-Winograd.

Compared to cuDNN’s Fused_Winograd, Im2col-Winograd ex-
hibits more stable performance. Our blocking approach ensures
consistent performance, under scenarios of both large feature maps
with small channels and small feature maps with large channels.
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Besides, our boundary treatment prevents redundant computations,
reducing the impact of feature-map shapes on performance.

The filter transposition is not required in backpropagation. To
further improve speed, filters can be pre-transposed before using
CNNs for evaluation or prediction. The transposition latency can
also be hidden within multi-operator parallelism.

Both Γ𝑐64𝛼 (𝑛, 𝑟 ) and Γ𝑟𝑢𝑠𝑒𝛼 (𝑛, 𝑟 ) show enhanced performance over
Γ𝛼 (𝑛, 𝑟 ). The enhancement of Γ𝑐64𝛼 (𝑛, 𝑟 ) is positive correlated to 𝑟 ,
while Γ𝑟𝑢𝑠𝑒𝛼 (𝑛, 𝑟 ) shows greater enhancement as the 𝑟−1

𝛼 overlap
increases. Due to their better-vectorized data loading and higher
computation intensity, they are more robust to L2 cache miss and
exhibit more stable performance in cases with large channels.

Due to the boundary treatment method (Section 4.7), Γ𝛼 (𝑛, 𝑟 )
has optimal performance when 𝑂𝑊 %𝑛 = 0; otherwise, the overall
performance is compromised by slower algorithms. Generally, the
performance exhibits larger fluctuations in intervals with smaller
ofms, and tends to be smoother as 𝑛𝛼 decreases. Since our GEMM
convolution used for boundary treatment is slower than cuDNN’s
GEMM, the performance of Im2col-Winograd may fluctuate relative
to cuDNN’s. By optimizing the boundary-treatment GEMM, Im2col-
Winograd can have a more robust performance.

For 𝐹 (𝑛, 𝑟 ), its theoretical acceleration Φ is 𝑛𝑟
𝑛+𝑟−1 . Under the

constraint that 𝑛 + 𝑟 − 1 = 𝛼 , Φ(𝑟 ) = − 1
𝛼 𝑟 (𝑟 − 𝛼 − 1) is a convex

function and symmetric about 𝛼+12 . When 𝛼 is an odd number,
Φ can achieve the global maximum 1

𝛼 (
𝛼+1
2 )

2. However, for even
values of 𝛼 , Φ can only reach the local maximum 1

𝛼 ⌈
𝛼+1
2 ⌉ ⌊

𝛼+1
2 ⌋,

when 𝑟 is ⌈𝛼+12 ⌉ or ⌊
𝛼+1
2 ⌋. Additionally, both the lower and upper

bounds of Φ increase with 𝛼 .
The experimental results align with these patterns. Γ16 (𝑛, 𝑟 ) are

generally faster than Γ8 (𝑛, 𝑟 ). The performance of Γ8 (𝑛, 𝑟 ) is sym-
metric around 9

2 , and reaches the local maximum when 𝑟 is 4 or 5.
Based on performance, Γ8 (𝑛, 𝑟 ) can be divided into 3 levels, where
Γ8 (4, 5) & Γ8 (5, 4) are the fastest, Γ8 (6, 3) & Γ8 (3, 6) have the moder-
ate speed, and Γ8 (7, 2) & Γ8 (2, 7) are the slowest. Γ16 (𝑛, 𝑟 ) achieves
the best theoretically acceleration when 𝑟 is 8 or 9, so Γ16 (8, 9) and
Γ16 (9, 8) are faster than Γ16 (10, 7).

With respect to 𝛼+1
2 , the theoretical acceleration of Γ𝛼 (𝑛, 𝑟 ) and

Γ𝛼 (𝑟, 𝑛) are symmetric. However, their memory-access overhead is
different, resulting in different performance. For instance, Γ8 (6, 3)
has a memory-access overhead that is higher than Γ𝑟𝑢𝑠𝑒8 (3, 6) and
lower than Γ8 (3, 6), so its speed is between the two.

6.2 Experiment 2: Accuracy Analysis
We use FP64-CPU and cuDNN convolutions as benchmarks, to
evaluate the accuracy of Im2col-Winograd.
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Figure 10: The Distribution of Relative Error.

Table 3: The Average Relative Errors. The shapes of ofms
are in 𝑁 ×𝑂𝐻 ×𝑂𝑊 ×𝑂𝐶 format. CuGEMM and CuWino-
grad respectively denote the Implict_Precomp_GEMM and
Fused_Winograd algorithms of cuDNN.

Shape of ofms Γ8 (7, 2) CuGEMM

128 × 112 × 112 × 64 1.43E-07 1.87E-07
128 × 56 × 56 × 128 2.01E-07 2.63E-07
128 × 28 × 28 × 256 2.90E-07 1.30E-05
128 × 14 × 14 × 512 4.31E-07 2.33E-05

Shape of ofms Γ8 (5, 4) CuGEMM
128 × 80 × 80 × 64 2.09E-07 1.29E-05
128 × 40 × 40 × 128 3.12E-07 2.52E-05
128 × 20 × 20 × 256 4.93E-07 4.67E-05
128 × 10 × 10 × 512 8.28E-07 7.91E-05

Shape of ofms Γ8 (6, 3 ) CuGEMM CuWinograd
128 × 96 × 96 × 64 2.04E-07 1.14E-05 1.09E-07
128 × 48 × 48 × 128 2.69E-07 1.49E-05 1.52E-07
128 × 24 × 24 × 256 3.68E-07 2.92E-05 2.21E-07
128 × 12 × 12 × 512 5.20E-07 5.59E-05 3.37E-07

Shape of ofms Γ8 (2, 7) CuGEMM

32 × 128 × 128 × 64 2.56E-07 3.93E-05
32 × 64 × 64 × 128 3.80E-07 7.88E-05
32 × 32 × 32 × 256 5.89E-07 7.43E-05
32 × 16 × 16 × 512 9.75E-07 8.92E-05

Shape of ofms Γ8 (4, 5) CuGEMM

64 × 128 × 128 × 64 2.10E-07 2.02E-05
64 × 64 × 64 × 128 3.05E-07 3.96E-05
64 × 32 × 32 × 256 4.57E-07 7.80E-05
64 × 16 × 16 × 512 7.21E-07 1.45E-04

Shape of ofms Γ8 (3, 6) CuGEMM
64 × 96 × 96 × 64 2.65E-07 3.08E-05
64 × 48 × 48 × 128 3.99E-07 5.80E-05
64 × 24 × 24 × 256 6.40E-07 1.05E-04
64 × 12 × 12 × 512 1.12E-06 8.62E-05

Shape of ofms Γ16 (10, 7) CuGEMM
64 × 80 × 80 × 64 1.04E-05 3.88E-05
64 × 40 × 40 × 128 1.12E-05 7.60E-05
64 × 20 × 20 × 256 1.27E-05 6.94E-05
64 × 10 × 10 × 512 1.59E-05 1.15E-04

Shape of ofms Γ16 (9, 8) CuGEMM
32 × 144 × 144 × 64 9.86E-06 5.21E-05
32 × 72 × 72 × 128 1.04E-05 1.02E-04
32 × 36 × 36 × 256 1.18E-05 1.89E-04
32 × 18 × 18 × 512 1.48E-05 1.62E-04

Shape of ofms Γ16 (8, 9) CuGEMM
32 × 128 × 128 × 64 9.66E-06 6.83E-05
32 × 64 × 64 × 128 1.02E-05 1.33E-04
32 × 32 × 32 × 256 1.13E-05 2.46E-04
32 × 16 × 16 × 512 1.40E-05 1.35E-04

6.2.1 Methods. The CPU convolution uses FP64 accumulators,
providing much higher accuracy than the GPU convolutions. The
accuracy is quantified by the average of relative error, and the
results of CPU convolution are considered as the true values. The
widths of ofms are multiples of 𝑛 to avoid the boundary treatment
(Section 4.7). The ifms and filters were generated following the
uniform distribution within [1, 2].

6.2.2 Analysis. The average relative errors are presented in Table3.
Figure 10 compares the relative error distribution between Γ16 (𝑛, 𝑟 )
and cuDNN Implict_Precomp_GEMM.

The average relative error of Γ8 (𝑛, 𝑟 ) is on the order of 10−7,
and that of Γ16 (𝑛, 𝑟 ) is about 10−5. Compared to cuDNN, Im2col-
Winograd has a similar accuracy to Fused_Winograd, and a superior
accuracy over Implict_Precomp_GEMM. As illustrated in Figure
10, compared to Implict_Precomp_GEMM, the error distribution
of Γ16 (𝑛, 𝑟 ) is closer to 0 with a smaller average-value. Although
Γ16 (𝑛, 𝑟 ) has a larger maximum-value of error, the proportion of
such large values is negligible.

Compared to standard convolution (GEMM, direct), Winograd
convolution has fewer multiplications, thus reducing the accuracy
loss arising from floating-point operations. With the increase of 𝛼 ,
the items in transform matrices of 𝐹 (𝑛, 𝑟 ) exhibit a larger disparity
in their magnitudes. Such disparity can negatively impact accuracy,
when it surpasses the precision of a specific datatype. As a result,
Γ16 (𝑛, 𝑟 ) has a lower accuracy compared to Γ8 (𝑛, 𝑟 ).

Overall, in most cases, the accuracy of Γ8 (𝑛, 𝑟 ) and Γ16 (𝑛, 𝑟 ) is
acceptable for FP32 datatype with a precision of 7 digits.

6.3 Experiment 3: CNN Training
To analyze the efficiency and convergence of Im2col-Winograd, we
integrated it into Alpha-v1.2 (mentioned in Section 5.7) to train
CNNs [8, 28] on Cifar10 [12] and ILSVRC2012 [5, 16] (a version of
ImageNet), using PyTorch-2.2.1 [27] as the benchmark.

6.3.1 Methods. The CNNs of Alpha and PyTorch were identi-
cal and underwent the same procedures. Activation functions are
LeakyRelu [21]. Specific convolutional and full-connect layers were
adjusted to fit tensor shapes, while the backbones of CNNs remain
unaltered. 5 BatchNorm [9] layers were added into VGG to expedite
convergence. Full-connect and convolutional layers were initialized
using kaiming-uniform [7]. SGDM and Adam [11] were used to
train CNNs, with SoftMax and 0.001 learning rate.
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Cifar10 Input shapes are 32 × 32 × 3 with 10 categories. Batch
size is 512. Data was processed on an RTX3060ti.

ILSVRC2012 Input shape are 128×128×3 with 1000 categories.
Batch size is 256. Data was processed on an RTX4090.

The labels were encoded to one-hot formats, and the pixels were
linearly scaled to [−1, 1]. The loss-function value was recorded per
10 steps. To plot the loss curves of ILSVRC2012, a sliding window
of size 10 was used to average the loss values without overlap.

VGG16x5 and VGG16x7 are constructed to evaluate Γ8 (4, 5) and
Γ16 (10, 7). Based on the VGG16 [28] architecture, VGG16x5 adjusts
all filters from 3× 3 to 5× 5, and VGG16x7 changes the filter shapes
of the first 4 convolutional layers to 7 × 7.

6.3.2 Analysis. Table 4 and 5 present the performance of Alpha
and PyTorch. The loss curves are shown in Figure 11 and 12.
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Figure 11: Loss Curves on ILSVRC2012. The training con-
figurations associated with each sub-figure are sequentially
enumerated as follows:
0. 𝑅𝑒𝑠𝑁𝑒𝑡18 +𝐴𝑑𝑎𝑚, 50 𝑒𝑝𝑜𝑐ℎ. 1. 𝑅𝑒𝑠𝑁𝑒𝑡34 +𝐴𝑑𝑎𝑚, 50 𝑒𝑝𝑜𝑐ℎ.
2. 𝑉𝐺𝐺16 +𝐴𝑑𝑎𝑚, 30 𝑒𝑝𝑜𝑐ℎ. 3. 𝑉𝐺𝐺19 +𝐴𝑑𝑎𝑚, 40 𝑒𝑝𝑜𝑐ℎ.
4. 𝑉𝐺𝐺16𝑥5 +𝐴𝑑𝑎𝑚, 40 𝑒𝑝𝑜𝑐ℎ. 5. 𝑉𝐺𝐺16𝑥7 + 𝑆𝐺𝐷𝑀, 30 𝑒𝑝𝑜𝑐ℎ.

Table 4: The performance on ILSVRC2012. The data of Alpha
is in red, and the data of PyTorch is in blue.

Network Training Speed Acceleration Train set accuracy GPU memory Weight file

ResNet18 Adam, 50 epochs   610.67 s/epoch      922.33 s/epoch 1.510× 98.16%  98.30% 5767 MB    8509 MB 66.8 MB   50.9 MB

ResNet34 Adam, 50 epochs 1028.13 s/epoch    1450.88 s/epoch 1.411× 98.35%  98.38%  9151 MB   12858 MB 117 MB   89.8 MB

VGG16 Adam, 30 epochs  845.63 s/epoch    1172.92 s/epoch 1.387× 97.48%  97.65% 10964 MB   18198 MB 293 MB   223 MB

VGG19 Adam, 40 epochs  925.03 s/epoch    1361.81 s/epoch 1.472× 97.86%  97.42% 11215 MB   18638 MB 320 MB   244 MB

VGG16x5 Adam, 40 epochs 1389.54 s/epoch   2808.32 s/epoch 2.021× 96.62%  97.13% 11308 MB   23750 MB 424 MB   323 MB

VGG16x7 SGDM, 30 epochs 1263.36 s/epoch   2066.59 s/epoch 1.636× 95.88%  95.61% 10794 MB   22176 MB 317 MB   228 MB

On both datasets, CNNs of Alpha and PyTorch show similar
convergence and accuracy. However, Alpha outperforms PyTorch
in terms of speed and memory usage. When training VGG using Py-
Torch on ILSVRC012, there are fluctuations in loss curves, primarily
attributed to the relatively high learning rate of 0.001.

Based on the results, Im2col-Winograd does not visibly affect the
convergence and accuracy of CNNs; its higher accuracy compared
to standard convolution can be advantageous for stable conver-
gence. Alpha’s lower memory usage demonstrates the memory
efficiency of Im2col-Winograd, which is also an advantage for fused
convolution algorithms.
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Figure 12: Loss Curves on Cifar10. The training configura-
tions associated with each sub-figure are sequentially enu-
merated as follows:
0. 𝑅𝑒𝑠𝑁𝑒𝑡18 +𝐴𝑑𝑎𝑚, 25 𝑒𝑝𝑜𝑐ℎ. 1. 𝑅𝑒𝑠𝑁𝑒𝑡18 + 𝑆𝐺𝐷𝑀, 35 𝑒𝑝𝑜𝑐ℎ.
2. 𝑅𝑒𝑠𝑁𝑒𝑡34 +𝐴𝑑𝑎𝑚, 30 𝑒𝑝𝑜𝑐ℎ. 3. 𝑅𝑒𝑠𝑁𝑒𝑡34 + 𝑆𝐺𝐷𝑀, 40 𝑒𝑝𝑜𝑐ℎ.
4. 𝑉𝐺𝐺16 +𝐴𝑑𝑎𝑚, 35 𝑒𝑝𝑜𝑐ℎ. 5. 𝑉𝐺𝐺16 + 𝑆𝐺𝐷𝑀, 35 𝑒𝑝𝑜𝑐ℎ.
6. 𝑉𝐺𝐺19 +𝐴𝑑𝑎𝑚, 40 𝑒𝑝𝑜𝑐ℎ. 7. 𝑉𝐺𝐺19 + 𝑆𝐺𝐷𝑀, 40 𝑒𝑝𝑜𝑐ℎ.
8. 𝑉𝐺𝐺16𝑥5 +𝐴𝑑𝑎𝑚, 40 𝑒𝑝𝑜𝑐ℎ. 9. 𝑉𝐺𝐺16𝑥5 + 𝑆𝐺𝐷𝑀, 40 𝑒𝑝𝑜𝑐ℎ.

Table 5: The performance on Cifar10. The data of Alpha is in
red, and the data of PyTorch is in blue.

Network Training Speed Acceleration Train\Test accuracy GPU memory Weight file

ResNet18
Adam, 25 epochs   5.106 s/epoch    5.910 s/epoch 1.157× 99.06%  \  78.18%

98.90%  \  77.90% 1119 MB   2250 MB 66.7 MB
48.2 MBSGDM, 35 epochs   5.076 s/epoch    5.763 s/epoch 1.135× 100.0%  \  57.28%

100.0%  \  58.90% 1054 MB   2246 MB

ResNet34
Adam, 30 epochs   9.939 s/epoch  11.386 s/epoch 1.146× 99.12%  \  79.51%

98.87%  \  79.16% 1730 MB   3066 MB 120 MB
87.3 MBSGDM, 35 epochs   9.986 s/epoch  11.229 s/epoch 1.124× 100.0%  \  60.80%

99.83%  \  61.24% 1588 MB   2884 MB

VGG16
Adam, 35 epochs   7.971 s/epoch    9.606 s/epoch 1.205× 98.15%  \  83.02%

97.59%  \  82.62% 1670 MB   3187 MB 78.7 MB
56.7 MBSGDM, 35 epochs   7.942 s/epoch    9.440 s/epoch 1.189× 100.0%  \  75.92%

100.0%  \  75.96% 1602 MB   3172 MB

VGG19
Adam, 40 epochs   9.784 s/epoch  11.431 s/epoch 1.168× 96.08%  \  81.19%

96.03%  \  80.98% 1812 MB   3252 MB 106 MB
77 MBSGDM, 40 epochs   9.697 s/epoch  11.312 s/epoch 1.167× 99.83%  \  76.60%

99.60%  \  76.56% 1720 MB   3251 MB

VGG16x5
Adam, 40 epochs 13.944 s/epoch  20.308 s/epoch 1.454× 97.88%  \  82.02%

97.65%  \  81.77% 2046 MB  4976 MB 212 MB
156 MBSGDM, 40 epoch 13.851 s/epoch  19.959 s/epoch 1.441× 99.95%  \  77.06%

99.91%  \  77.14% 1878 MB  4974 MB

In contrast to VGG, ResNet uses non-unit-stride convolution
rather than max-pooling for down-sampling, which restricts the
contributions of Im2col-Winograd. That is one of the reasons why
Alpha achieves lower acceleration on ResNet compared to VGG.
Since Γ8 (4, 5) and Γ16 (10, 7) result in higher reduction in multipli-
cations over Γ8 (6, 3), Alpha shows higher acceleration on VGG16x5
and VGG16x7 than VGG16 and VGG19.

In addition to forward convolution and backward deconvolution,
the training speed is also related to computing filter gradients,
activation functions, data preprocessing, computation scheduling,
etc. As a result, the acceleration of Im2col-Winogradmay differ from
that in Experiment 1. However, given the pivotal role of Im2col-
Winograd in CNN training, these results support its efficiency.
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7 CONCLUSION
This paper introduces Im2col-Winograd and its GPU implemen-
tations for NHWC format. The reduced space complexity makes
Im2col-Winograd less restricted by the limited resources on a SM,
to have better flexibility and applicability. We have implemented
the 4/8/16 state Im2col-Winograd for unit-stride convolution and
deconvolution with 2-9 filter widths. The effectiveness of our im-
plementations has been demonstrated in experiments.

Compared to previous fused-Winograd implementations, Im2col-
Winograd provides acceleration across a broader spectrum of filter
shapes, which can be beneficial for investigating CNN structures
and extracting features at various scales. In addition to NHWC
format, our implementations can be ported to NCHW and CHWN
formats while remaining efficiency. Apart from GPU and FP32, the
decomposition method and some techniques of Im2col-Winograd
may be applicable to other hardware and data types.

The C++ source of Im2col-Winograd is available in the repository
of Alpha: https://github.com/GilgameshXYZ123/Dragon-Alpha-v1.2.
The code can be modified to cater to more platforms and scenarios.
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