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Abstract
Winograd algorithm powerfully accelerates Convolutional Neural
Networks. However, for backward-filter convolution (BFC), existing
implementations often struggle to achieve both high throughput
and low memory usage, due to challenges from large filters and
small output sizes. This work proposes WinRS, a fast, memory-
efficient, and flexible BFC algorithm. WinRS reduces N-D large
filters into 1D formats and precisely splits them to match the fastest
kernels. These fully-fused kernels execute the entire BFC in on-chip
memory with tiny workspace, and exploit the superior acceleration
potential of 1D Winograd convolution. To address low parallelism
from small outputs, WinRS adaptively balances workloads into an
optimal number of block groups, maximizing hardware utilization.
WinRS supports various filter-gradient widths (multiples of 2 to
9). When ported to FP16 on Tensor Cores, WinRS achieves 3.27×
the throughput of its FP32 CUDA-Core version. In experiments,
WinRS achieves 1.05× to 4.7× speedup over cuDNN GEMM using
comparable workspace; WinRS uses less than 4% workspace of
cuDNN FFT and Winograd, and exhibits higher throughput with
memory- and FLOP-bound workloads.
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1 Introduction
Convolutional Neural Networks (CNNs) have played a pivotal role
in deep learning, achieving impressive performance in computer
vision, natural language processing, scientific computing, and be-
yond. As models grow increasingly complex to enhance accuracy,
CNN training often demands hundreds of GPU hours and dozens-of-
gigabytes memory. Backward-filter convolution (BFC) is a primary
step in this process. BFC computes filter gradients to update model
weights, and accounts for a substantial portion (e.g. ∼ 1/3) of overall
time complexity. Forward convolution (FC) and backward-data con-
volution (BDC) are also essential, with all three steps dominating
both training time and memory usage.

GEMM [1, 2], Winograd [3–11], and FFT [5, 12, 13] are efficient
convolution algorithms, but each faces inherent trade-offs. GEMM is
memory-efficient but can be slow due to cubic time complexity. FFT
and Winograd reduce time complexity but require large workspace
for intermediate results, several times the data size. To overcome
this memory bottleneck, prior studies fused multiple Winograd
steps into one, developing fused-Winograd [3–6, 9–11, 14], which
is both fast and memory-efficient. While effective for FC and BDC
with small filters1 and large output sizes, fused-Winograd has not
been thoroughly optimized for BFC due to two challenges: (1) large
filters do not match smaller Winograd transform matrices; (2) small
output sizes lead to low parallelism and hardware underutilization.
Moreover, (3) many Winograd approaches are limited to specific
filter shapes, and (4) their GPU implementations often rely onCUDA
Cores [3, 4, 6, 14–16] rather than higher-throughput Tensor Cores.
This underscores the need for higher flexibility and performance.

To address limitations of existing BFC methods, this work pro-
poses WinRS, a fast, memory-efficient, and flexible Winograd BFC
algorithm. WinRS tackles challenges in BFC, by supporting large fil-
ters, maximizing parallelism, and leveraging hardware acceleration.
We implement WinRS through two main components:

• Adaptive Configuration: Via dimension Reduction and fil-
ter Split, WinRS bridges N-D large filters with 1D Winograd
transforms, precisely matching the fastest kernels. WinRS
adaptively optimizes workload distribution based on BFC
parameters and hardware, ensuring high parallelism with
minimized partitioning overhead in small-output scenarios.

1Filters are also known as convolutional kernels. To avoid confusion with ’kernel
(kernel function)’, we use ’filter’ instead of ’convolutional kernel’.
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• High-Performance Kernels: WinRS kernels fuse all stages
to minimize workspace and data movement. These kernels
utilize 1D Winograd convolutions for higher acceleration
than 2D approaches [3–11, 15–25], and are highly optimized
for GPUs with Tensor-Core acceleration.

To cover standard and extended CNN configurations,WinRS utilizes
13 distinct Winograd convolutions, supporting filter gradients with
arbitrary heights and widths ranging from 2× to 9×,

We evaluate WinRS on L40S, RTX 4090, 3090 and A5000 GPUs.
Experimental results demonstrate that WinRS achieves 1.05× to
4.7× speedup over cuDNN GEMM, using comparable workspace.
WinRS requires less than 4% workspace of cuDNN FFT and Wino-
grad, and has higher throughput in memory-bound and compute-
intensive cases. The accuracy of WinRS is comparable to cuDNN.

Our contributions are summarized as follows:
• We propose WinRS algorithm, that flexibly accelerates BFC
by reducing time complexity by 1.5× to 4.5×, with a small
average workspace 18% of data size.
• We introduce a general reduction-split method and an adap-
tive workload-distribution method, to optimize Winograd
convolution for large filters and small outputs.
• We implement fully-fused decomposition 1D-Winograd con-
volutions on Tensor Cores, with mixed-precision transforms
and scaling matrices to enhance numerical stability.

2 Background
2.1 Winograd Convolution
Winograd convolution [3] employs Winograd-minimal-filtering
algorithm [26] to reduce time complexity. 1DWinograd convolution
𝐹 (𝑛, 𝑟 ), formulated in (1), convolves input tile X ∈ R𝛼 with filter
tileW ∈ R𝑟 to generate output tile Y ∈ R𝑛 , where 𝛼 = 𝑛 + 𝑟 − 1.
A ∈ R𝛼×𝑛 , G ∈ R𝛼×𝑟 , and D ∈ R𝛼×𝛼 are transform matrices.

Y = A𝑇 [(GW) ⊙ (D𝑇X)] (1)

Nesting 𝐹 (𝑛0, 𝑟0) and 𝐹 (𝑛1, 𝑟1) yields 2D Winograd convolution
𝐹 (𝑛0 ×𝑛1, 𝑟0 × 𝑟1), which convolves X ∈ R𝛼0×𝛼1 withW ∈ R𝑟0×𝑟1
to produce Y ∈ R𝑛0×𝑛1 , as formulated in (2).

Y = A𝑇0 [(G0WG𝑇1 ) ⊙ (D
𝑇
0XD1)]A1 (2)

Winograd convolution consists of four steps, as shown in (1) and
(2): Ŵ = GW or G0WG1𝑇 is filter transform (FT); X̂ = D𝑇X
or D𝑇0XD𝑤 is input transform (IT); Ŷ = Ŵ ⊙ X̂ is element-
wise multiplication (EWM);Y = A𝑇 Ŷ or A𝑇0 ŶA1 is the output
transform (OT). FFT convolution [5, 12, 13] has similar four steps,
but utilizes Fast Fourier Transform instead of transform matrices.
Fused-Winograd [3–6, 9–11, 14] fuses IT, EWM, and OT into one
kernel. Non-Fused-Winograd [5, 7, 10, 18, 19, 23] and FFT execute
these four steps in separate kernels.

2.2 Challenges of Backward-Filter Convolution
FC, BDC, and BFC are three primary operations of a convolutional
layer, each constituting about one-third of the overall time com-
plexity. In each training step: FC convolves input feature maps X
with filtersW to produce output feature maps Y; BDC convolves
output gradients ∇Y with W𝑇 to solve input gradients ∇X; BFC
convolves X with ∇Y to compute filter gradients ∇W.

Modern CNNs [27–30] typically have small filters from 2 × 2 to
11 × 11, but high resolutions like 224 × 224 for ImageNet [31] and
32 × 32 for Cifar10 [32]. As a result, FC and BDC have small filters
and large outputs, whereas BFC operates on large filters and small
outputs, as shown in Figure 1. This unique characteristic of BFC
poses two challenges for optimizing Winograd convolution.

Challenge 1. The large filters (∇Y) mismatch transformmatrices,
whose dimensions are commonly smaller than 16 for two reasons:
(1) More complex elements in larger transform matrices can harm
numerical accuracy. InD ∈ R4×4, non-zero elements are simply ±1;
however, D ∈ R16×16 involves 164597

576 and 1
16 . (2) Kernels require

on-chip memory (e.g. shared memory and registers) to rapidly
perform Winograd transforms and enlarge cache-block sizes [33]
for latency hiding. However, the limited on-chip memory constrains
both transform-matrix and cache-block sizes.

Challenge 2. The small outputs (∇W) impede full hardware
utilization. Typical convolution kernels [1, 3, 4, 6–8, 13–15, 34]
distribute workload across multiple blocks, with the block count
proportional to output size

cache-block size . As shown in Figure 2, while this
blocking approach generates abundant blocks for FC and BFC, the
BFC block count is often far fewer than the number of streaming-
multi-processors (e.g. 128 on RTX 4090 GPU), which leaves many
processors idle and causes performance bottlenecks.

Figure 1: The 2nd convolutional layer in VGG16. The FC and
BDC have 3 × 3 filters and 224 × 224 outputs; conversely, the
BFC has 224 × 224 filters and 3 × 3 outputs.

Figure 2: Block count of the 2nd convolution Layer in VGG16.
With a cache-block size of 𝐵𝑁 (64) × 𝐵𝑀 (32) × 8 and a batch
size of 32, the 𝐹 (2 × 2, 3 × 3) kernel [4, 6] yields 12544 blocks
for the FC and BDC, but only 8 for the BFC.

3 Algorithm Overview
As a BFC algorithm, WinRS convolves input feature maps X with
output gradients ∇Y to compute filter gradients ∇W. Let Ω𝛼 (𝑛, 𝑟 )
denote a WinRS kernel using 𝐹 (𝑛, 𝑟 ) Winograd convolution, where
𝛼 = 𝑛 + 𝑟 − 1. The notations of 2D BFC are listed in Table 1.

Before execution, WinRS configures three critical parameters:
the fastest pair of kernels, Ω𝛼0 (𝑛0, 𝑟0) and Ω𝛼1 (𝑛1, 𝑟1); the optimal
segment count 𝑍 ; and the expected segment shape 𝑆𝐻 × 𝑆𝑊 . As
shown in Figure 3, the execution follows a three-phase pipeline:
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Figure 3: WinRS workflow. 1. Divide ∇Y into 9 segments. The 12 and 4 segment widths are multiples of 6 and 2 to match 𝐹 (3, 6)
and 𝐹 (3, 2). 2. The {0, 1, 3, 4, 6, 7}-th segments launch Ω8 (3, 6), and the {2, 5, 8}-th segments launch Ω4 (3, 2). Figure 4 shows the
workflow of Ω8 (3, 6) on the 0-th segment. 3. Results of segments are written to 9 ∇Ŵ buckets, and summed to compute ∇W.

Figure 4: Kernel Ω8 (3, 6) workflow on the 𝑧-th segment (𝑧 = 0 for Figure 3). (1) Decompose ∇Y(𝑧) into 9 filters ∈ R𝑁×12×𝑂𝐶 . (2)
Split each filter into 2 units ∈ R𝑁×6×𝑂𝐶 . (3) Perform 𝐹 (3, 6)Winograd convolution between each unit and its corresponding part
of X. (4) Accumulate 18 convolution results to compute the results ∇W(z) of the 𝑧-th segment.

Table 1: The Notations of 2D Backward-Filter Convolution.

Symbol Meaning

IH, IW Input height and width

OH, OW Output-gradient height and width

FH, FW Filter-gradient height and width

IC, OC Input and output channel sizes

N Batch size

𝐗 Input feature maps ∈ ℝ𝑁×𝐼𝐻×𝐼𝑊×𝐼𝐶

∇𝐘 Output gradients ∈ ℝ𝑁×𝑂𝐻×𝑂𝑊×𝑂𝐶

∇𝐖 Filter gradients ∈ ℝ𝑂𝐶×𝐹𝐻×𝐹𝑊×𝐼𝐶

1. Partitioning: Divide ∇Y into 𝑍 segments, with the 𝑧-th seg-
ment denoted as ∇Y(𝑧) ∈ R𝑁×𝑆𝐻 (𝑧 )×𝑆𝑊 (𝑧 )×𝑂𝐶 . To balance
workload, the width 𝑆𝑊 (𝑧) and height 𝑆𝐻 (𝑧) are approxi-
mate to 𝑆𝐻 and 𝑆𝑊 . 𝑆𝑊 (𝑧) is a multiple of either 𝑟0 or 𝑟1,
precisely matching Ω𝛼0 (𝑛0, 𝑟0) or Ω𝛼1 (𝑛1, 𝑟1).
Allocate a workspace (𝑍 −1) times the size of ∇W. Logically
concatenate this workspace with ∇W to create ∇Ŵ, which
contains 𝑍 buckets with the same dimensions as ∇W.

2. Kernel Execution: Launch Ω𝛼0 (𝑛0, 𝑟0) and Ω𝛼1 (𝑛1, 𝑟1) on
segments with 𝑆𝑊 (𝑧) in multiples of 𝑟0 and 𝑟1, respectively.
On ∇Y(𝑧), the kernel Ω𝛼 (𝑛, 𝑟 ) ∈ {Ω𝛼0 (𝑛0, 𝑟0),Ω𝛼1 (𝑛1, 𝑟1)}
distributes the workload across a group of blocks, and exe-
cutes four stages as shown in Figure 4:

(1) Dimension Reduction: Decompose ∇Y(𝑧) into 𝑆𝐻 (𝑧) 1D
filters ∈ R𝑁×𝑆𝑊 (𝑧 )×𝑂𝐶 , with ℎ-th filter denoted as ∇Y(𝑧)ℎ .

(2) Filter Split: Split each ∇Y(𝑧)ℎ ⊂ ∇Y(𝑧) into
𝑆𝑊 (𝑧 )
𝑟 units

∈ R𝑁×𝑟×𝑂𝐶 , where the𝑤-th unit is denoted as ∇Y(𝑧)ℎ,𝑤 .

(3) Winograd: For each ∇Y(𝑧)ℎ,𝑤 ⊂ ∇Y(𝑧), perform 𝐹 (𝑛, 𝑟 )
Winograd convolution between ∇Y(𝑧)ℎ,𝑤 and the corre-
sponding region of X.

(4) Accumulation:Accumulate the convolution results from all
∇Y(𝑧)ℎ,𝑤 ⊂ ∇Y(𝑧) to compute the partition result ∇W(𝑧),
and write ∇W(𝑧) to the 𝑧-th ∇Ŵ bucket.

3. Reduction: After all segment results have been written to
corresponding buckets, launch a reduction kernel to sum all
∇W buckets to calculate ∇W.

The core objective of WinRS is to achieve both high through-
put and low memory usage, while handling large filters and small
outputs. To this end, WinRS performs a three-level decomposition:

Level 1. WinRS partitions ∇Y into 𝑍 segments to distribute the
workload across 𝑍 block groups, where the block count per group
is proportional to output size

cache-block size . Compared to typical blocking
approaches, this partitioning improves parallelism by 𝑍 times and
enables full hardware utilization.

Level 2. WinRS reduces ∇Y(𝑧) into 1D filters, enabling straight-
forward extension to N-D BFC with two modifications: in Partition-
ing, divide ∇Y ∈ R𝑁×𝐷1×...×𝐷𝑘×𝑂𝐶 into 𝑍 segments; in Dimen-
sion Reduction, decompose ∇Y(𝑧) ∈ R𝑁×𝑆1 (𝑧 )×...×𝑆𝑘 (𝑧 )×𝑂𝐶 into∏𝑘

𝑖=1 𝑆𝑖 (𝑧 )
𝑆𝑘

filters ∈ R𝑁×𝑆𝑘 (𝑧 )×𝑂𝐶 . The 1D filters enable the use of
1D Winograd convolution, which has a higher acceleration upper
limit and greater optimization ease than 2D Winograd. Relative to
direct convolution, 𝐹 (𝑛, 𝑟 ) and 𝐹 (𝑛0 × 𝑛1, 𝑟0 × 𝑟1) achieve acceler-
ation factors2 of 𝐴1D = 𝑛𝑟

𝛼 and 𝐴2D =
𝑛0𝑟0
𝛼0

𝑛1𝑟1
𝛼1

. As formulated in
(3), with an equivalent space-complexity limit (𝛼 = 𝛼0𝛼1), 𝐴1D has
a higher upper limit. As formulated in (4), for a cache-block size
2Direct convolution requires 𝑛𝑟 multiplications, while 𝐹 (𝑛, 𝑟 ) performs only 𝛼 multi-
plications in EWM——the primary source of time complexity.
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of 𝐵𝑁 × 𝐵𝑀 × 𝐵𝐾 , fused 𝐹 (𝑛, 𝑟0) kernels have higher computation
intensity (𝜌1D) than that (𝜌2D) of 𝐹 (𝑛0 × 𝑛1, 𝑟0 × 𝑟1), leading to
superior computing efficiency.

𝐴𝑚𝑎𝑥1D = ( 𝛼 + 12𝛼 )
2
≥ 𝐴𝑚𝑎𝑥2D = ( 𝛼0 + 12𝛼0

𝛼1 + 1
2𝛼1
)
2
(𝛼 = 𝛼0𝛼1) (3)

𝜌1D =
2𝐵𝑁 𝐵𝑀

𝐵𝑁 𝑟0+𝐵𝑀𝛼
≥ 𝜌2D =

2𝐵𝑁 𝐵𝑀

𝐵𝑁 𝑟0𝑟1+𝐵𝑀𝛼0𝛼1
(𝛼 = 𝛼0𝛼1) (4)

Level 3. By splitting 1D filters into hybrid units, WinRS indi-
rectly matches large filters with much smaller transform matrices.
This process also reduces the space complexity required for convo-
lution, enabling WinRS kernels to fuse all stages into one. The full
fusion minimizes workspace and global-memory data movement
for intermediate results, allowing all stages to be executed rapidly
in on-chip memory. This filter split avoids zero padding [22, 24] to
eliminate redundant calculations.

4 Configuration Adaptation
To optimize efficiency, WinRS adjusts execution configurations in
three steps: (1) select the fastest pair of WinRS kernels, (2) estimate
the baseline segment count; (3) calculate suitable segment shapes
and the final segment count.

4.1 Fastest Kernel Pair Selection
To split a 1D filter into hybrid units without zero padding, WinRS
requires at least two distinct unit widths, corresponding to two dif-
ferent 1DWinograd convolutions. Consequently, WinRS selects the
fastest pair of kernels, Ω𝛼0 (𝑛0, 𝑟0) and Ω𝛼1 (𝑛1, 𝑟1), to perform BFC,
prioritizing the higher-throughput kernel Ω𝛼0 (𝑛0, 𝑟0) for the bulk
of computations. This kernel pair satisfies three criteria: (1) 𝑛0 and
𝑛1 are divisors of 𝐹𝑊 ; (2) there exists integers 𝑘0 and 𝑘1, such that
𝑘0𝑟0 + 𝑘1𝑟1 = 𝑂𝑊 ; (3) it achieves maximal theoretical throughput,
determined by weighting kernel throughput coefficients.

Figure 5 shows examples of the fastest kernel pairs.When 𝐹𝑊 = 3
and 𝑂𝑊 = 16, WinRS selects Ω8 (3, 6) and Ω4 (3, 2). The higher-
throughput kernel Ω8 (3, 6) processes portions of 𝑂𝑊 divisible by
6, while Ω4 (3, 2) handles the residual components. Although more
than two kernels could improve throughput stability, the marginal
gains are outweighed by increased partitioning overhead.

Figure 5: The fastest WinRS kernel pairs.

4.2 Baseline Segment Count Estimation
Given the fastest kernel pair, WinRS maximizes the number of seg-
ments to launch Ω𝛼0 (𝑛0, 𝑟0). As illustrated in Algorithm 1, WinRS
estimates the baseline segment count 𝑍 based on Ω𝛼0 (𝑛0, 𝑟0), while
balancing a key trade-off: although raising 𝑍 enhances parallelism,
it causes extra partitioning overhead, including workspace and
bucket-reduction time.

In a convolutional layer, FC, BDC, and BFC share similar compu-
tational complexity and the same parameter sets. The block counts

Algorithm 1 Simplified algorithm to estimate 𝑍 .

1: 𝑍 ← (𝑏0 + 𝑏1)/1.45𝑏2
2: Calculate 𝑏2 and 𝑍𝑚𝑎𝑥 based on 𝑁SM and data size
3: if 𝑍 < 2 and 𝑏2 ≥ 𝑏2: return 𝑍 ← 1
4: Calculate 𝑍1 based on computation intensity and 𝑁SM
5: Calculate 𝑍2 based on time complexity
6: 𝑍 ← min(𝑍, 𝑍1, 𝑍2, 𝑁𝑂𝐻𝑂𝑊

512 )
7: 𝑍 ← min(𝑃 ⌈𝑍

𝑃
⌉, 𝑍𝑚𝑎𝑥 ) # 𝑃 ← min(2⌈log2 (𝑍 ) ⌉ , 8)

for FC or BFC scale linearly with feature map dimensions, and is
usually large due to high resolutions. Therefore, WinRS initializes
𝑍 as 𝑏0+𝑏1

1.45𝑏2 (line 1), where 𝑏0, 𝑏1, and 𝑏2 are the block counts for
FC, BDC, and BFC, respectively.

On a GPU, blocks are evenly distributed among 𝑁SM streaming
multiprocessors (SMs) for execution. To achieve full hardware uti-
lization, the required block count scales proportionally with 𝑁SM.
Based on 𝑁SM and the data size (total size of X, ∇Y, ∇W), WinRS
calculates two thresholds (line 2): 𝑏2, to check whether one seg-
ment can provide sufficient blocks for full SM utilization; and 𝑍𝑚𝑎𝑥 ,
the upper limit of 𝑍 to avoid excessive overhead.

Since kernels with higher computation intensity can better hide
latency,WinRS establishes a threshold 𝑘 that is positively correlated
with computation intensity. When 𝑍 ≥ 𝑘𝑁2/𝑁SM, each SM has
sufficient blocks to hide most latency. Beyond this threshold, raising
𝑍 only marginally improves latency hiding, but linearly increases
partitioning overhead. Based on 𝑁SM and the computation intensity
of Ω𝛼0 (𝑛0, 𝑟0), WinRS computes 𝑍1 to constrain 𝑍 (line 4).

To make 𝑍 positively correlated with the workload volume,
WinRS calculates 𝑍2 based time complexity to limit 𝑍 (line 5).
𝑍 is padded to a multiple of 2, 4, or 8 for GPU friendliness, and
finally constrained by 𝑍𝑚𝑎𝑥 (line 7).

4.3 Segment Shape Calculation
Given the baseline segment count 𝑍 , WinRS calculates the opti-
mal segment height 𝑆𝐻 and width 𝑆𝑊 , then partitions ∇Y into
𝑍 = ⌊𝑂𝐻

𝑆𝐻
⌋ × ⌈𝑂𝑊

𝑆𝑊
⌉ segments, as shown in Figure 3. All segments,

except those at the bottom and right edges, have a uniform shape of
𝑆𝐻 ×𝑆𝑊 to balance workload. As shown in Algorithm 2, WinRS cal-
culates 𝑆𝐻 and 𝑆𝑊 , subject to the constraint 𝑍 ≈ 𝑍 ≤ ⌊𝑂𝐻

𝑆𝐻
⌋ ⌊𝑂𝑊

𝑆𝑊
⌋.

Algorithm 2 Simplified algorithm to calculate 𝑆𝐻 and 𝑆𝑊 .

1: 𝑍 ← min(𝑍, 𝐻𝑚𝑎𝑥𝑊𝑚𝑎𝑥 )
2: if 𝑍 = 1: (𝑆𝐻 , 𝑆𝑊 ) ← (𝑂𝐻 , 𝑟0 ⌊𝑂𝑊

𝑟0
⌋) terminate

3: if 𝑍 ≥𝑊𝑚𝑎𝑥 : (𝑆𝐻 , 𝑆𝑊 ) ← (⌊𝑂𝐻𝑂𝑊

𝑍𝑟0
⌋, 𝑟0) terminate

4: if𝑊𝑚𝑎𝑥% 𝑍 = 0: (𝑆𝐻 , 𝑆𝑊 ) ← (𝑂𝐻 , 𝑟0 ⌊𝑊𝑚𝑎𝑥

𝑍
⌋) terminate

5: 𝑥 ← min factor of𝑊𝑚𝑎𝑥 in [⌊𝑊𝑚𝑎𝑥

𝑍
⌋, ⌊𝐻𝑚𝑎𝑥𝑊𝑚𝑎𝑥

𝑍
⌋]

6: if 𝑥 exists : (𝑆𝐻 , 𝑆𝑊 ) ← (⌊𝑂𝐻𝑂𝑊

𝑍𝑥𝑟0
⌋, 𝑥𝑟0) terminate

7: (𝑆𝐻 , 𝑆𝑊 ) ← (𝑂𝐻 , 𝑟0 ⌊𝑂𝑊

𝑟0
⌋)
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Since 𝑆𝑊 should be a multiple of 𝑟0 to match Ω̂𝛼0 (𝑛0, 𝑟0), and 𝑆𝐻
must exceed 𝑝𝐻 to prevent zero segments; the maximum number
of segments along height and width axes are 𝐻𝑚𝑎𝑥 = ⌊𝑂𝐻

𝑝𝐻
⌋ and

𝑊𝑚𝑎𝑥 = ⌈𝑂𝑊

𝑟0
⌉, respectively (line 1).

𝑍 = ⌊𝑂𝐻
𝑆𝐻
⌋ (⌊𝑂𝑊

𝑆𝑊
⌋ + 1) ≥ 𝑍 (1 + ⌊𝑂𝑊

𝑆𝑊
⌋−1) (5)

When 𝑂𝑊 is not a multiple of 𝑆𝑊 , inequality (5) holds and
reveals that reducing 𝑆𝑊 decreases the total segment count 𝑍 , thus
minimizing the computational redundancy in boundary segments.
When 𝑍 ≥ 𝑊𝑚𝑎𝑥 , the minimum of 𝑆𝑊 is 𝑟0 (line 4). Otherwise,
there may exist integer 𝑥 to let 𝑥𝑟0 be the minimum, where 𝑥
must satisfy three constraints: (1) 𝑍 ≥ ⌊𝑂𝑊

𝑥𝑟0
⌋ = ⌊𝑊𝑚𝑎𝑥

𝑥 ⌋; (2) 𝑍 ≤
𝐻𝑚𝑎𝑥 ⌊𝑊𝑚𝑎𝑥𝑟0

𝑥𝑟0
⌋; (3)𝑊𝑚𝑎𝑥𝑟0 % 𝑥𝑟0 = 0. Therefore, 𝑥 is the minimum

factor of𝑊𝑚𝑎𝑥 within interval [⌊𝑊𝑚𝑎𝑥

𝑍
⌋, ⌊𝐻𝑚𝑎𝑥𝑊𝑚𝑎𝑥

𝑍
⌋] (line 6).

5 Kernel Design
Although reduced-precision data types, like FP16 and INT8, can
accelerate CNN inference, many training tasks still require FP32
for gradient calculation to avoid vanishing and exploding gradients.
Therefore, WinRS starts from stable FP32, and then ported to FP16
with Tensor Core acceleration for enhanced throughput.

Figure 6: The 13 types of WinRS kernels.

As shown in Figure 6, WinRS kernels cover 13 distinct 1D Wino-
grad convolutions, supporting 𝐹𝑊 ∈ {𝑛𝑘 |𝑛 ∈ N∗, 2 ≤ 𝑘 ≤ 9}. To
balance throughput and numerical accuracy, the selected values of
𝛼 are 2, 4, 8, and 16. Further, Ω4 (3, 2), Ω8 (3, 6), Ω8 (5, 4), Ω8 (7, 2),
Ω16 (9, 8), and Ω16 (7, 10) have been ported from FP32 to FP16.

5.1 Common Execution Flow
Having established the method for workload distribution across
segments, this section details the execution flow of Ω𝛼 (𝑛, 𝑟 ) for the
𝑧-th segment ∇Y(𝑧) ∈ R𝑁×𝑆𝐻 (𝑧 )×𝑆𝑊 (𝑧 )×𝑂𝐶 .

Given the 𝐵𝑁 ×𝐵𝑀 ×8 cache-block size3, the workload on ∇Y(𝑧)
is processed by a group of 𝑂𝐶

𝐵𝑁
× 𝐼𝐶
𝐵𝑀
× 𝐹𝐻 𝐹𝑊

𝑛 blocks. Each block
computes 𝐵𝑁 ×𝐵𝑀 output tiles, and is further divided into 8 warps,
where each warp comprises 32 threads. The execution flow of a
specific block is presented in Algorithm 3.

As formalized in (6), each output tile Y ⊂ ∇W(𝑧) is computed
by accumulating Winograd-convolution results between input tile
Xℎ,𝑤 ⊂ ∇X and filter tileWℎ,𝑤 ⊂ ∇Y(𝑧). The left and right sum-
mations (Σ) represent Dimension Reduction and Kernel Split, re-
spectively. By factoring out A𝑇 from both summations, Ω𝛼 (𝑛, 𝑟 )
3For FP32 kernels: the maximum 𝐵𝑁 × 𝐵𝑀 is 64 × 32 when 𝛼 ∈ {16, 8}, 64 × 64
when 𝛼 = 4, 128 × 128 when 𝛼 = 2. FP16 kernels utilize larger cache-block sizes: the
maximum 𝐵𝑁 × 𝐵𝑀 is 64 × 64 when 𝛼 = 16, and 128 × 64 when 𝛼 ∈ {4, 8}.

Algorithm 3 Simplified execution flow of a Ω𝛼 (𝑛, 𝑟 ) block.
A ∈ R𝛼×𝑛 , G ∈ R𝛼×𝑟 , and D ∈ R𝛼×𝛼 are transform matrices of
𝐹 (𝑛, 𝑟 ); 𝑧 is the segment index, and 𝑏𝑧 is block index.
1: Function fetch_data(∇Y, X) :
2: W[𝐵𝑁 ] [8] [𝑟 ] ← 𝐵𝑁 × 8 filter tiles ⊂ ∇Y
3: Ŵ[𝐵𝑁 ] [8] [𝛼] ← GW # filter transform
4: X[𝐵𝑀 ] [8] [𝛼] ← 𝐵𝑀 × 8 input tiles ⊂ X
5: X̂ [𝐵𝑀 ] [8] [𝛼] ← D𝑇X # input transform
6: Gs[𝑏𝑢𝑓 ] [] [0 : 𝑤𝑖 ] [0 : 𝐵𝑁

32 𝑙𝑖 ] ← Ŵ[0 : 𝑤𝑖 ] [0 :
𝐵𝑁

32 𝑙𝑖 ] []
7: Ds[𝑏𝑢𝑓 ] [] [0 : 𝑤𝑖 ] [0 : 𝐵𝑀32 𝑙𝑖 ] ← X̂[0 : 𝑤𝑖 ] [0 : 𝐵𝑀32 𝑙𝑖 ] []
8: syncthreads
9: Function batched_GEMM(v,Gs,Ds):
10: v[0 : 𝛼] += Gs[0 : 𝛼]𝑇Ds[0 : 𝛼] # 𝛼-batched GEMM
11: 𝑏𝑢𝑓 ← (𝑏𝑢𝑓 + 1) mod 𝑁𝑏𝑢𝑓 # switch buffer
12: Function write_result(v, ∇Ŵ):
13: SMEM As[𝛼] [ 𝐵𝑁 𝐵𝑀

𝑅
] # reuse the space of Gs and Ds

14: for 𝑖 ← 0 to 𝑅 :
15: syncthreads; As← 1

𝑅
elements of v

16: syncthreads; Ŷ [ 𝐵𝑁 𝐵𝑀
𝑅
] [𝛼] ← As𝑇 # SMEM to registers

17: Y ← A𝑇 Ŷ # output transform
18: write Y to the 𝑧-th ∇Ŵ bucket
19:
20: v[𝛼] [𝐵𝑁 ] [𝐵𝑀 ] ← 0 # accumulators
21: 𝑏𝑢𝑓 ← 0 # buffer index
22: SMEM Gs[𝑁𝑏𝑢𝑓 ] [𝛼] [8] [𝐵𝑁 ], Ds[𝑁𝑏𝑢𝑓 ] [𝛼] [8] [𝐵𝑀 ]
23: for 𝑘 ← 0 to 𝑆𝐻 (𝑧, 𝑏𝑖 )𝑆𝑊 (𝑧) by 𝑟 :
24: fetch_data(∇Y, X)
25: for 𝑛 ← 8 to 𝑁 by 8 :
26: batched_GEMM(v,Gs,Ds)
27: fetch_data(∇Y, X)
28: batched_GEMM(v,Gs,Ds)
29: write_result(v, ∇Ŵ)

combines all stages into the main loop (line 23-28), leaving only
the OT to be executed afterwards. Dimension Reduction and Filter
Split have minimal overhead, requiring only a few registers and
contributing less than 1% of the total instructions.

Y =

𝑆𝐻 (𝑧 )∑︁
ℎ=1

𝑆𝑊 (𝑧 )/𝑟∑︁
𝑤=1

A𝑇[(GWℎ,𝑤) ⊙ (D𝑇Xℎ,𝑤)] (6)

Data Fetching (line 1-9). In every iteration of the main loop, a
block loads 𝐵𝑁 × 8 filter tiles and 𝐵𝑀 × 8 input tiles. As tensors are
organized in NHWC layout, each warp’s 32 threads load continuous
𝐵𝑁 and 𝐵𝑀 tiles along 𝐼𝐶 and𝑂𝐶 axes, using vectorized operations
to enhance memory bandwidth. The loaded tiles are transformed
and stored to SMEM at continuous offsets, with each thread’s store
location determined by warp index𝑤𝑖 and lane index 𝑙𝑖 .

Within a block, since all threads load data from the same height-
axis locations, the data-loading regions are clipped to bypass height-
axis zero padding of size 𝑝𝐻 . As shown in Figure 7, given block
index 𝑏𝑖 , the X-loading area in is clipped to height-axis coordinates
between 𝑖ℎ𝑠 and 𝑖ℎ𝑒 . Accordingly, the height of ∇Y(𝑧)-loading area
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is clipped to 𝑆𝐻 (𝑧, 𝑏𝑖 ) = 𝑖ℎ𝑒 − 𝑖ℎ𝑠 (line 23). This optimization re-
duces time complexity by 𝑝𝐻 (𝑝𝐻 +1)

𝐹𝐻𝑂𝐻
, and can avoid more redundant

calculations with small feature maps.

Figure 7: Data-loading area clipping. With a zero padding of
1, the data-loading area is clipped from 6× 6 to 4× 6, reducing
time complexity by 12.5%.

Width-axis zero padding of size 𝑝𝑊 is implicitly handled. For
FP32 kernels, addresses are masked to -1, making texture memory
return zero automatically. For FP16 kernels, conditional statements
verify address boundaries instead. As 𝑟 × 𝑟 filters are commonly
used with ⌊ 𝑟2 ⌋ padding, certain kernels are optimized for 𝑝𝑊 ≤ ⌊ 𝑟2 ⌋
to further simplify zero-padding process.

Batched GEMM (line 9-11). The transformed 𝐵𝑁 × 8 filter
tiles and 𝐵𝑀 × 8 input tiles are derived from independent input
and output channels. To maximize computation intensity, their
corresponding EWMs are converted into an 𝛼-batched 𝐵𝑁 ×𝐵𝑀 ×8
general matrix multiplication (GEMM).

FP32 kernels execute the batched GEMM on CUDACores, assign-
ing each GEMM to a group of 256

𝛼 threads. Each GEMM proceeds
through 8 rounds of 𝐵𝑁 ×𝐵𝑀 outer products, where the outer prod-
ucts are decomposed into𝑚×8 sub-operations for thread paralleliza-
tion (𝑚 ∈ {8, 16}). Given thread-specific offsets 𝑢𝑥 𝐾𝑖 , 𝐺𝑖 , and 𝐷𝑖 ,
the execution flow of the thread is as follows:
1: for 𝑘 ← 0 to 8 :
2: a[𝑚] ← Gs[𝑏𝑢𝑓 ] [𝐾𝑖 ] [𝑘] [𝐺𝑖 : 𝐺𝑖 +𝑚] # SMEM to registers
3: b[8 ] ← Ds[𝑏𝑢𝑓 ] [𝐾𝑖 ] [𝑘] [𝐷𝑖 : 𝐷𝑖 + 8 ] # SMEM to registers
4: v[𝑢𝑥 ] [𝐺𝑖 : 𝐺𝑖 +𝑚] [𝐷𝑖 : 𝐷𝑖 + 8] += a ⊗ b
FP16 kernels accelerate the batched GEMM with Tensor Cores,

distributing 1
8 computation per warp. Each GEMM is decomposed

into 16 × 8 × 8 sub-operations and implemented via PTX assembly.
Key PTX instructions include: (1) ldmatrix.sync.aligned.x4.trans.m8n8,
loading four 8 × 8 matrix tiles from SMEM with automatic trans-
position; (2) mma.sync.aligned.m16n8k8, performing a 16 × 8 × 8
GEMM with warp-level synchronization. The execution flow of the
𝑤𝑖 -th warp is as follows (𝛼 ≥ 8):
1: for 𝛽 ← 𝑤𝑖

𝛼
8 to (𝑤𝑖 + 1) 𝛼8 :

2: for 𝑖 ← 0 to 𝐵𝑁 by 32:
3: for 𝑗 ← 0 to 𝐵𝑀 by 32:
4: A𝑖 [32] [8] ← Gs[𝑏𝑢𝑓 ] [𝛽] [0 : 8] [𝑖 : 𝑖 + 32] #ldmatrix.x4
5: B𝑗 [32] [8] ← Ds[𝑏𝑢𝑓 ] [𝛽] [0 : 8] [ 𝑗 : 𝑗 + 32] #ldmatrix.x4
6: v[𝛽] [𝑖 : 𝑖 + 32] [ 𝑗 : 𝑗 + 32] += A𝑖B𝑇𝑗 # 2×4 mma.m16n8k8
Result Output (line 13-18). After the main-loop, each block

retains 𝐵𝑁 ×𝐵𝑀 pre-transformed output tiles in accumulators, with
tile elements distributed across 𝛼 threads. Due to SMEM-capacity
constraints, OT is completed over 𝑅 rounds (𝑅 ∈ {4, 8}). In each
round, threads store 1

𝑅
of accumulators to SMEM array As; then

the transposed As data is loaded into registers to perform OT. To
enhance bandwidth, output tiles are written to global memory via
wide memory transactions.

5.2 Optimization Techniques
Software Pipelining. Upon completing the batched GEMM,

threads prefetch and transform tiles for the next iteration. Across
different warps, the batched GEMM, prefetching, and transforms
are concurrently executing on SMs, which overlaps computations
with memory access latency. SMEM is doubled buffered (𝑁𝑏𝑢𝑓 = 2)
to further enhance warp parallelism and optimize throughput.

Bank Conflict Elimination. Threads within a warp may com-
pete to access the same SMEM bank, leading to bank conflicts.

In FP16 Batched GEMM, to prevent bank conflicts from ldmatrix
instructions, the last dimensions of SMEM array Gs and Ds are
padded with 128 bits, yielding 46% throughput improvement.

In FP32 Batched GEMM, to avoid bank conflicts from 128-bit
SMEM loading, thread-specific offsets𝐺𝑖 and 𝐷𝑖 are contrapuntally
arranged, enhancing throughput by about 5%:
1: 𝑢𝑦, 𝑢𝑥 ← ⌊𝑇𝑖/𝛼⌋, 𝑇𝑖 mod 𝛼 # 𝑇𝑖 ← 32𝑤𝑖 + 𝑙𝑖
2: 𝐺𝑖 , 𝐷𝑖 ← 8(2⌊𝑢𝑦

𝜃
⌋ + 𝑢𝑦 mod 2), 8⌊𝑢𝑦 mod 𝜃

2 ⌋ # 𝜃 ← 𝐵𝑀
8

In Result Output, to eliminate bank conflicts from SMEM storing,
the last dimension of As is padded with 128 bits for FP32 and 64
bits for FP16, improving throughput by about 2%.

Transform Simplification. The low-rank transform matrices
A, G, and D exhibit structured symmetry, when calculated using
interpolation points ∈ {0,±1,±2,± 1

2 ,±3,±
1
3 ...}. As shown Figure 8,

the 2𝑘-th and (2𝑘 + 1)-th (𝑘 ≥ 0) rows of A, G and D𝑇 have equiva-
lent and opposite elements in even and odd positions, respectively.
For IT, FT and OT, this property enables the reuse of multiplica-
tion results, which nearly halves the required multiplications and
improves throughput by about 6%.

𝐴 =

1 0 0

1 1 1

1 −1 1

1 2 4

1 −2 4

1
1

2

1

4

1 −
1

2

1

4

0 0 0

𝐺 =

1 0 0 0 0 0

−
2

9
−

2

9
−

2

9
−

2

9
−

2

9
−

2

9

−
2

9

2

9
−

2

9

2

9
−

2

9

2

9
1

90

2

90

4

90

8

90

16

90

32

90
1

90
−

2

90

4

90
−

8

90

16

90
−

32

90
64

90

32

90

16

90

8

90

4

90

2

90
64

90
−

32

90

16

90
−

8

90

4

90
−

2

90

0 0 0 0 0 1

𝐷𝑇 =

1 0 −
21

4
0

21

4
0 −1 0

0 1 1 −
17

4
−

17

4
1 1 0

0 −1 1
17

4
−

17

4
−1 1 0

0
1

2

1

4
−

5

2
−

5

4
2 1 0

0 −
1

2

1

4

5

2
−

5

4
−2 1 0

0 2 4 −
5

2
−5

1

2
1 0

0 −2 4
5

2
−5 −

1

2
1 0

0 −1 0
21

4
0 −

21

4
0 1

Figure 8: Transform matrices of Winograd 𝐹 (3, 6).

Accuracy Optimization. FP16 kernels incorporate certain FP32
operations, accounting for 0.6% to 18% of FP16 operations. FT, IT,
and OT are temporarily computed in FP32 precision, and finally
converted to FP16. WinRS partitions convolution accumulation into
multiple ∇Y segments, mitigating numerical overflow. The reduc-
tion kernel sums all partition results using FP32 Kahan summation,
to minimize accuracy loss.

The limited dynamic range of FP16 poses challenges for Ω16 (𝑛, 𝑟 )
transform matrices, whose elements span magnitude from 10−8
to 105. However, the row-wise magnitude coherence enables the
incorporation of scaling matrices A𝑠 , G𝑠 , and D𝑠 , as shown in (7).
G𝑠 and D𝑠 normalize row elements in G and D, enforcing unit
L1-norm per row to minimize changes to data magnitude. In OT,
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A𝑠 rescales accumulators to correct values after FP32 conversion,
leveraging its wider dynamic range to prevent numerical overflow.

Y = (A𝑠A)𝑇 [((G𝑠G)W) ⊙ ((D𝑠D)𝑇X)] (7)

6 Evaluation
We evaluate WinRS in terms of workspace, throughput, and accu-
racy, against the high-performance cuDNN-9.8 library.

Benchmarks include five cuDNN BFC algorithms: (1) Cu-GEMM,
encompassing GEMM-based Cu-Algo0, Cu-Algo1, and Cu-Algo3;
(2) Cu-FFT, FFT-based; (3) Cu-WinNF, cuDNN’s sole Winograd BFC,
which is non-fused and supports 3× 3 and 5× 5 ∇W. Notably, only
Cu-Algo1 and Cu-WinNF support FP16 Tensor-Core acceleration,
with FP16 Cu-WinNF limited to 3 × 3 ∇W.

The FP32 test is on RTX 4090 and RTX 3090 (flagship consumer
GPUs, 24 GB). The FP16 test is on RTX 4090, L40S (data-center GPU,
48GB), and RTX A5000 (workstation GPU, 24 GB).

BFC parameters are based on common CNN architectures: (1)
∇W shape 𝐹𝐻 × 𝐹𝑊 is from 2 × 2 to 9 × 9; (2) channel sizes 𝐼𝐶 and
𝑂𝐶 are 64, 128, 256, 512, or 1024, with 𝐼𝐶 = 𝑂𝐶 ; (3) feature map
shapes 𝑂𝐻 ×𝑂𝑊 and 𝐼𝐻 × 𝐼𝑊 are factors of standard resolutions
∈ {400 × 400, 384 × 384, 224 × 224, 128 × 128}, or multiples of 𝑟 to
only test Ω𝛼 (𝑛, 𝑟 ); (4) batch size 𝑁 is 32, 64, 128, or 256; (5) channel
sizes are doubled when feature-map shapes are halved, to ensure
consistent time complexity.

6.1 Workspace Evaluation
The experimental data size is from 52 MB to 2032 MB. For reference,
a single convolutional layer in VGG [27] consumes up tp 383.7 MB
during inference, with 32 batch size and 224× 224 resolution. Table
2 summarizes the workspace of algorithms, except for Cu-Algo0
requiring no workspace.

Table 2: Algorithm workspace. the data marked × indicates
the multiple of workspace relative to data size.

Algorithm Average Min Max

WinRS 37.9 MB 0.18× 0.0 MB 0.00× 134.8 MB 1.67×

Cu-Algo1 358.3 MB 1.06× 36.3 MB 0.28× 2035.7 MB 2.21×

Cu-Algo3 17.7 MB 0.10× 0.0 MB 0.00× 324.6 MB 0.91×

Cu-FFT 2948.0 MB 9.09× 584.5 MB 3.11× 17536 MB 30.40×

Cu-WinNF 956.0 MB 2.67× 180 MB 2.23× 2593.6 MB 5.90×

Figure 9: WinRS workspace for 3× 3 ∇Won RTX 4090. Left y-
axis: workspace and∇Wsize inMB. Right y-axis:∇Y segment
count. X-axis: ∇Y dimensions in 𝑁 :𝑂𝐻 :𝑂𝑊 :𝑂𝐶 format.

WinRS workspace ranges from 0 MB to 134.8 MB, with an aver-
age of 37.9 MB, which corresponds to 0× to 1.67× the data size, av-
eraging 0.18×. Compared to Cu-Algo1, Cu-FFT, Cu-WinNF, WinRS

utilizes only 10.6%, 1.29%, and 3.96% of their respective average
workspace (348.3 MB, 2948 MB, 956 MB). While WinRS requires
slightly more workspace than Cu-Algo3 (17.7 MB on average), it
achieves demonstrably higher throughput.

WinRS workspace remains small across all channel sizes, as
shown in Figure 9. When channel size is small (e.g. 64, 128), a
relatively large number of ∇Y segments are generated to enhance
parallelism; however, the workspace is small due to the tiny size
of ∇W. As channel sizes increase (e.g. 256, 512), each ∇Y segment
provides more blocks, thus reducing the segment count. When
channel sizes are sufficiently large (e.g. 1024), a single ∇Y segment
provides sufficient blocks, resulting in 0 workspace.

6.2 Throughput Evaluation
In experiments, the time complexity ranges from 137 to 2174GFLOPs,
sufficiently large to maximize GPU utilization. Throughput is cal-
culated as 2𝑂𝐶𝐹𝐻 𝐹𝑊 𝐼𝐶𝑂𝐻𝑂𝑊 𝑁

𝑡
, where the execution time 𝑡 is es-

timated by averaging 1000 repeated runs. Cu-GEMM represents
the fastest algorithm among Cu-Algo0, Cu-Algo1, and Cu-Algo3.
Figure 10 and 11 show algorithm throughput, and the speedup of
WinRS over cuDNN is summarized in Table 3.

Table 3: WinRS speedup over cuDNN. Each cell displays the
speedup data in a format of ’𝑎𝑣𝑒𝑟𝑎𝑔𝑒:𝑚𝑖𝑛𝑖𝑚𝑢𝑚-𝑚𝑎𝑥𝑖𝑚𝑢𝑚’.

FH × FW
FP32: RTX 4090 FP32: RTX 3090

Cu-GEMM Cu-FFT Cu-WinNF Cu-GEMM Cu-FFT Cu-WinNF

2 × 2 1.51: 1.05-2.00 7.85: 2.20-16.8 N/A 1.35: 1.06-1.63 5.82: 1.38-12.6 N/A

3 × 3 1.95: 1.38-2.79 5.87: 1.29-17.3 2.24: 0.64-6.33 1.53: 1.21-2.23 3.92: 0.96-8.15 1.39: 0.62-3.38

4 × 4 1.59: 1.26-2.33 3.91: 1.16-11.0 N/A 1.59: 1.27-1.97 2.58: 0.83-5.08 N/A

5 × 5 2.17: 1.64-2.69 3.48: 0.99-10.1 1.21: 0.51-2.68 2.05: 1.66-2.75 2.00: 0.66-4.36 0.87: 0.46-1.78

6 × 6 2.43: 1.68-3.56 2.82: 0.99-6.60

N/A

1.86: 1.59-2.26 1.63: 0.63-3.08

N/A
7 × 7 2.41: 1.98-2.96 2.73: 0.89-7.16 2.23: 1.44-3.20 1.41: 0.62-2.76

8 × 8 2.38: 1.92-3.17 2.65: 0.88-5.95 2.17: 1.82-2.63 1.44: 0.59-2.72

9 × 9 2.52: 1.83-2.95 2.38: 0.99-5.08 2.16: 1.77-2.62 1.33: 0.55-2.23

FH × FW
FP16: RTX 4090 FP16: L40S FP16: RTXA5000

Cu-GEMM Cu-WinNF Cu-GEMM Cu-WinNF Cu-GEMM Cu-WinNF

3 × 3 2.21: 1.54-2.96 2.17: 0.86-3.80 2.43: 1.43-4.70 2.52: 0.84-4.77 1.81: 1.32-2.25 1.20: 0.58-2.04

5 × 5 2.22: 1.61-2.90

N/A

2.03: 1.84-2.23

N/A

1.96: 1.59-2.98

N/A7 × 7 2.12: 1.60-2.57 1.97: 1.55-2.46 1.80: 2.10-1.59

9 × 9 2.41: 1.90-2.96 2.04: 2.59-1.66 2.08: 1.73-2.63

For FP32, WinRS speedup is 1.05× to 3.56× over Cu-GEMM,
0.55× to 17.3× over Cu-FFT, and 0.46× to 6.33× over Cu-WinNF. For
FP16, WinRS speedup is 1.32× to 4.7× over Cu-GEMM, and 0.58×
to 4.77× over Cu-WinNF. On average, WinRS’s FP16 Tensor-Core
implementations achieve 3.27× speedup over its FP32 CUDA-Core
baseline. Due to reduced time complexity, WinRS, Cu-FFT, and
Cu-WinNF can exceed the theoretical throughput of hardware.

WinRS has higher throughput under following conditions: (1)
larger 𝐹𝑊 promotes time-complexity reduction through larger
transform matrices; (2) increased channel sizes lead to more blocks
per ∇Y segment, which enhances parallelism and reduces bucket-
reduction overhead; (3) smaller feature-map sizes allow the clip of
more height-axis zero padding, where the smaller data size also
improves the cache hit ratio.
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Figure 10: FP32 throughput on RTX 4090 and RTX 3090. Throughput (y-axis) is in TFLOPS. ∇Y dimensions (x-axis, 𝑁 :𝑂𝐻 :𝑂𝑊 :𝑂𝐶
format) maintain comparable time complexity in each sub-figure. Prefix 4 and 3 denote RTX 4090 and 3090, respectively.

Figure 11: FP16 throughput on L40S, RTX 4090, and RTX A5000. Throughput (y-axis) is in TFLOPS. ∇Y dimensions (x-axis,
𝑁 :𝑂𝐻 :𝑂𝑊 :𝑂𝐶 format) maintain comparable time complexity in each sub-figure.

Compared to Cu-FFT and Cu-WinNF, WinRS has asymptotic
time complexity but larger constant factors4. However, WinRS can
outperform them for two advantages: (1) Cu-FFT and Cu-WinNF
execute IT, FT, OT, and EWM in four separate kernels, with global-
memoryworkspace at least 2.23× the data size, incurring substantial
I/O overhead for intermediate data movement. WinRS stores in-
termediate results in on-chip SMEM, with 10× higher bandwidth
than global memory, significantly reducing I/O time. (2) Although
the EWM stages of Cu-FFT and WinNF have higher computation
intensity than WinRS, they cannot run in parallel with IT, FT, and
OT. As a result, the dense EWM computations can not overlap the
memory latency of IT, FT, and OT via software pipelining. Con-
versely, WinRS kernels execute all stages concurrently through full
fusion, enhancing latency hiding and hardware utilization.

For an algorithm, the throughput is crucially affected by its
hardware-resource demands. A breakdown is given in (8), where:𝑇
is the expected execution time; 𝐶time is the time complexity; 𝐶data
is I/O volume of moving intermediate results; 𝑉comp and 𝑉band are

4WinRS reduces time complexity by 1.5× to 4.5×. Cu-FFT reduces time complexity by
𝛾𝐹𝐻 𝐹𝑊 ×, where 𝛾 is a constant. For 3 × 3 and 5 × 5 ∇W, Cu-WinNF reduces time
complexity by 4× and 6.25×, whereas the reduction of WinRS is 2.25× and 3.75×.

hardware’s computing capability and bandwidth, respectively.

𝑇 =
𝐶time
𝑉comp

+ 𝐶data
𝑉band

(8)

Fused-Algorithms (e.g. WinRS and Cu-GEMM) are primarily gov-
erned by 𝐶time

𝑉comp
, due to minimal intermediate-result I/O. In contrast,

Non-fused Algorithms (e.g. Cu-FFT and Cu-WinNF) are additionally
influenced by 𝐶data

𝑉band
. Here are two key observations:

Observation 1. Non-fused algorithms are more sensitive to ten-
sor dimensions. With a fixed product of channel sizes and feature-
map shapes,𝐶time remains invariant, but𝐶data increaseswith smaller
channels and larger features, leading to higher I/O overhead and
therefore lower throughput. In contrast, fused-algorithm through-
put are more robust across varying tensor dimensions.

Observation 2. Fused algorithms favour computing capability
over memory bandwidth. While the throughput of fused algorithms
scales almost linearly with𝑉comp, non-fused algorithms are limited
by a weighting of 𝑉comp and 𝑉band. From RTX 3090 to RTX 4090,
𝑉comp and 𝑉band increase by 132% and 8%; from FP32 CUDA Cores
to FP16 Tensor Cores, 𝑉comp and 𝑉band increase by 297% and 100%.
As a result, WinRS has higher throughput relative to non-fused
algorithms on RTX 4090 than RTX 3090, and in FP16 than FP32.

8
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Specifically, for 3 × 3 ∇W, FP16 WinRS outperforms Cu-WinNF
when 𝑂𝐶 ≤ 512 on RTX 4090, whereas FP32 WinRS is faster at
𝑂𝐶 ≤ 256 and 𝑂𝐶 ≤ 128 on RTX 3090. L40S achieves similar FP16
throughput to RTX4090, due to its comparable 𝑉comp and 𝑉band.
Compared to RTX 4090, RTX A5000 has a lower ratio of 𝑉comp to
𝑉band. This makes non-fused algorithms perform better, where FP16
WinRS outperforms Cu-WinNF for 𝑂𝐶 ≤ 256.

Generally, WinRS has higher throughput than Cu-WinNF and
Cu-FFT, in memory-bound and compute-intensive scenarios.

6.3 Accuracy Evaluation
Accuracy is evaluated using Mean Absolute Relative Error (MARE),
against FP64 ground truth. Tensors are generalized with uniform
distribution in [0, 1]. For FP16 tests, ∇Y is scaled by 10−2 to prevent
numerical overflow. Table 4 summarizes the MAREs of algorithms.

Table 4: The MAREs of algorithms.

Algorithm FP32: min FP32: max FP16:min FP16: max

WinRS Ω4(n, r) 1.16e-7 4.79e-7
WinRS Ω8(n, r) 1.13e-7 8.26e-7 3.35e-4 2.69e-3
WinRS Ω16(n, r) 9.52e-6 1.34e-5 8.75e-4 1.09e-2

Cu-FFT 7.23e-8 1.45e-7
Cu-Algo0/Algo3 7.01e-8 5.92e-7

Cu-WinNF 4.78e-7 3.68e-6 1.59e-3 6.52e-1
Cu-Algo1 4.64e-5 1.78e-3 5.69e-4 8.34e-1

Figure 12: FP16 MARE distribution. (A, B): MARE versus
∇Y dimensions in 𝑁 :𝑂𝐻 :𝑂𝑊 :𝑂𝐶 format. (C): MARE versus
accumulation length 𝑁𝑂𝐻𝑂𝑊 .

Figure 13: CNN training loss on ImageNet-1K.

For FP32, Ω4 (𝑛, 𝑟 ) and Ω8 (𝑛, 𝑟 ) achieve MARE ∼ 10−7, slightly
less accurate than Cu-Algo0 but more accurate than Cu-WinNF. The
MARE of Ω16 (𝑛, 𝑟 ) is around 10−5, less accurate than Cu-WinNF
but more accurate than Cu-Algo1.

For FP16, Ω8 (𝑛, 𝑟 ) achieves MAREs ∼ 10−3 to 10−4, slightly
outperforming Cu-Algo1. Ω16 (𝑛, 𝑟 ) has an accuracy around 10−3,
between Cu-Algo1 and Cu-WinNF. As Figure 12 shows, when the
accumulation length is large (𝑁𝑂𝐻𝑂𝑊 ≥ 218, typical in early CNN
layers), Cu-Algo1 and Cu-WinNF can degrade in accuracy, whereas

WinRS maintains accuracy through accumulation segmentation
and FP32 Kahan summation. With smaller accumulation lengths
(common in deeper layers), WinRS is slightly less accurate due to
fewer ∇Y segments, but still comparable to Cu-Algo1.

We used FP32WinRS to train VGG16, VGG19 [27], ResNet34, and
ResNet50 [28] on ImageNet-1K [31] and Cifar10 [32] datasets. The
resulting accuracy is similar to PyTorch, with differences less than
±0.6% across all models. FP16 WinRS was used to train ResNet34
and ResNet50 on ImageNet-1K with Loss Scaling technique, achiev-
ing similar convergence to FP32 PyTorch, as shown in Figure 13.

6.4 Performance Summary
Prior evaluations have demonstrated WinRS’s high throughput and
memory efficiency. In terms of flexibility, WinRS offers a much
wider applicable range than Cu-WinNF. Compared to Cu-FFT’s
universal coverage, although WinRS supports a slightly narrower
range of 𝐹𝐻 × 𝐹𝑊 , it consistently outperforms Cu-GEMM, whereas
Cu-FFT lags behind Cu-GEMM with small 𝐹𝐻 × 𝐹𝑊 . These comple-
mentary strengths enable WinRS to achieve comparable real-world
applicability to Cu-FFT. Thus, WinRS is a fast, memory-efficient,
and flexible BFC algorithm.

7 Related Works
Winograd Implementations. Winograd convolution has been

implemented onGPUs [3–8, 14–16, 25], CPUs [9–11, 17], and FPGAs
[16, 18–24, 35]. Most [3–6, 8–11, 15, 17–19] target FC or BDC with
small filters (typically 3× 3). Although many GPU implementations
are based on CUDA Cores, a few non-fused-Winograd approaches
[5, 7] exploit Tensor Cores.

WinRS is a fused-Winograd convolution with Tensor-Core accel-
eration. Combined with dimension reduction and filter split, WinRS
leverages a wider variety ofWinograd convolutions to enhance flex-
ibility. While cuDNN [5] provides efficient Winograd BFC, WinRS
features full kernel fusion and adaptive workload distribution, lead-
ing to better performance in certain cases.

Most methods rely on 2DWinograd convolution, but WinRS and
Im2col-Winograd [14] employ the 1D approach. However, Im2col-
Winograd is designed for filter widths from 2 to 9, and uses fixed
workload distribution, limiting its applicability to BFC; besides, its
limitation to FP32 CUDA Cores restricts its throughput.

DecompositionWinograd. Previous studies [14, 16, 20–25, 36]
extend Winograd convolution to larger filters through decomposi-
tion, but only DWM [25] and WinTA [23] support BFC. WinTA is
an FPGA implementation. DWM presents a mathematically elegant
approach for BFC, but detailed information of its GPU design is
limited. While these works mainly focus on large filters, WinRS is
also optimized for small outputs via adaptive workload distribution,
crucial for BFC performance as it ensures sufficient parallelism and
minimized partitioning overhead.

A limitation in DWM,WinTA, and other methods [16, 21–25, 36]
is their multi-stage execution of Winograd convolution and decom-
position, leading to increased workspace for intermediate results
and data movement between processing units. WinRS tackles this
problem by fusing all stages into one.

The nested decomposition [24] requires both large filters and
outputs to recursively reduce time complexity, conflicting with the
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small-output characteristic of BFC. Moreover, its recursive nature
hiders kernel fusion, a key optimization in WinRS.

8 Conclusion
This work proposes WinRS, a fast, memory-efficient, and flexi-
ble BFC algorithm. Through dimension Reduction and filter Split,
WinRS matches N-D large filters with the fastest kernels, and
achieves full kernel fusion to mitigate memory bottlenecks. Based
on adaptive workload distribution, WinRS balances computations
across an optimal number of blocks, effectively optimizing hardware
utilization in small-output cases. Furthermore, WinRS leverages
13 distinct Winograd convolutions and Tensor-Core acceleration,
enhancing both flexibility and throughput.

WinRS has higher throughput for larger filter gradients, aligning
with the current trend towards larger filters [30, 37, 38]. FP16WinRS
kernels can be ported to BF16, and further to FP8 and INT8. With
moderate modifications, WinRS can support FC and BDC. WinRS
is open-source and adaptable for future use.
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